scholarly journals Shrinkage Study and Strength Aspects of Concrete with Foundry Sand and Coconut Shell as a Partial Replacement for Coarse and Fine Aggregate

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7420
Author(s):  
Kalyana Chakravarthy Polichetty Raja ◽  
Ilango Thaniarasu ◽  
Mohamed Abdelghany Elkotb ◽  
Khalid Ansari ◽  
C Ahamed Saleel

The demand for natural aggregates (river sand) is increasing day by day, leading to the destruction of the environment, a burden that will be passed on to young people. Further, wastes from various industries are being dumped in landfills, which poses serious environmental problems. In order to ensure sustainability, both the issues mentioned above can be solved by utilizing industrial waste as aggregate replacement in the concrete construction industry. This research is done to find out the results using two substances viz., waste foundry sand (WFS) and coconut shell (CS) substitute for river sand and coarse aggregate. Many researchers have found the maximum benefits of substituted substances used in cement, which has material consistency. This current observation explores these strong waste properties of waste-infused concrete and cement, which experience shrinkage from drying out. The replacement levels for waste foundry sand were varied, between 10%, 20%, and 30%, and for CS, it was 10% and 20%. The experimental outcomes are evident for the strength, which increases by using WFS, whereas the strength decreases by increasing the CS level. The concrete that experiences shrinkage from drying out is included in the waste material, showing a higher magnitude of drying shrinkage than conventional concrete.

This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Naga Rajesh Kanta ◽  
Markandeya Raju Ponnada

Purpose In the construction sector, river sand has turned into a costly material due to various reasons. In the current study, used foundry sand (UFS) and spent garnet sand (SGS) are used as a partial and full replacement to sand in concrete production. Design/methodology/approach The objective of the work is to develop non-conventional concrete by replacing river sand with a combination of UFS (constant 20Wt.% replacement) and SGS at various percentages (20, 40, 60 and 80 Wt.%). Findings Compared to conventional concrete, the 28 days compressive strength of non-conventional concrete (with UFS at 20% and spent garnet sand at 20%, 40% and 60% were 8.12%, 6.77% and 0.83% higher, respectively. The 28 days split tensile strength of non-conventional concrete (UFS at 20% and SGS at 20 and 40%) were 32.2% and 51.6% higher, respectively. Research limitations/implications It can be concluded that 60 Wt.% of river sand can be combined replaced with 20 Wt.% UFS and 40 Wt.% SGS to produce good quality concrete whose properties are on par with conventional concrete. Practical implications The results showed that combined SGS and UFS can be used as a partial replacement of river sand in the manufacturing of concrete that is used in all the applications of construction sector such as buildings, bridges, dams, etc. and non-structural applications such as drainpipes, kerbs, etc. Social implications Disposal of industrial by-product wastes such as SGS and UFS affects the environment. A sincere attempt is made to use the same as partial replacement of river sand. Originality/value Based on the literature study, no work is carried out in replacing the river sand combined with SGS and UFS in concrete.


2019 ◽  
Vol 11 (17) ◽  
pp. 4647 ◽  
Author(s):  
Warati ◽  
Darwish ◽  
Feyessa ◽  
Ghebrab

The increase in the demand for concrete production for the development of infrastructures in developing countries like Ethiopia leads to the depletion of virgin aggregates and high cement demand, which imposes negative environmental impacts. In sustainable development, there is a need for construction materials to focus on the economy, efficient energy utilization, and environmental protections. One of the strategies in green concrete production is the use of locally available construction materials. Scoria is widely available around the central towns of Ethiopia, especially around the rift valley regions where huge construction activities are taking place. The aim of this paper is therefore to analyze the suitability of scoria as a fine aggregate for concrete production and its effect on the properties of concrete. A differing ratio of scoria was considered as a partial replacement of fine aggregate with river sand after analyzing its engineering properties, and its effect on the mechanical properties of concrete were examined. The test results on the engineering properties of scoria revealed that the material is suitable to be used as a fine aggregate in concrete production. The replacement of scoria with river sand also enhanced the mechanical strength of the concrete. Generally, the findings of the experimental study showed that scoria could replace river sand by up to 50% for conventional concrete production.


2019 ◽  
Vol 8 (3) ◽  
pp. 1982-1988

Use of agro and industrial wastes in concrete production will cause sustainable concrete era and greener habitat. In this study an endeavor has been made to discover the propriety of Sugarcane Bagasse Ash (SCBA) and Granite Waste (GW) as partial replacement for traditional river sand. The percentage substitute is calculated based on the particle packing approach. The properties such as compressive, splitting tensile, flexural strengths and modulus of elasticity, water absorption, sorptivity and rapid chloride penetration test of the concrete with bagasse ash and granite waste as a partial replacement for river sand and to evaluate them with those of conventional concrete made with river sand fine aggregate are investigated. The test results show that the strength aspects of bagasse ash-granite waste concrete are higher than those of the conventional concrete. Moreover, they suggest that the bagasse ash-granite waste concrete has higher strength characteristics and remains in the lower permeability level shows improvement in overall durability of concrete than the conventional concrete.


In recent days, there is an intense need for an alternate cost effective and sustainable raw material for concrete which does not make the structure inferior in strength. An experimental study on the utilization of the waste plastic and M-sand in the place of river sand and aggregate partially was performed in paper. In the scenario of scarcity of river sand due to the territorial government action and restriction of usage because of the eco and environmental consideration, M-Sand is found to be an effective replacement and cost effective material. Concrete specimens were casted with combination of M-sand and plastic waste with 5%, 10%, 15%, 20% and 25% and compared against control mix. Cube test for compressive strength study, cylinder test for split tensile strength study and prism test for flexural strength study were done with the proposed concert mixture. All the specimens and tests were done for different curing period of 7, 14 and 28 days. The results obtained from the proposed mix of concrete are compared with the conventional concrete mix specimen respectively. The replacement of fine aggregates reduces the quantity of river sand to be used in concrete and also plastic fibres are proved to be more economical. Positive performance of the concrete with waste plastic and M-Sand as partial replacement of river sand was observed on all the experiments and found optimal in sustainable and economical performance.


Abstract: Used or Waste Foundry Sand can be utilized as an alternative for fine aggregate in conventional concrete. WFS or UFS can be used in large volume by partially replacing sand in construction industries. Here the strength properties of M25 and M60 grade concrete replaced by WFS by 0,10,20,30,40 and 50 percent w/w of fine aggregate is evaluated by measuring compression, split tensile and flexural strength at 7 days and 14 days.


2020 ◽  
Vol 13 (2) ◽  
pp. 47-53
Author(s):  
Arivalagan. S ◽  
Dinesh Kumar K S A ◽  
Sudhakar R

Concrete is the most widely used construction material today. The constituents of concrete are coarse aggregate, fine aggregate, coarse aggregate and water. Concrete plays a major role in the construction industry and a large quantum of concrete is being utilized. River sand, which isone of the constituent used in the production of conventional concrete, has become expensive and also a scarce material. In view of this,the utilization of demolished aggregate which isa waste material has been accepted as building material in many countries for the past three decades. The demand of natural sand in the construction industry has increased a lot resulting in the reduction of sources and an increase in price. Thus an increased need to identify a suitable alternative material from industrial waste in place of river sand, that is eco-friendly and inexpensive construction debris i.e fresh concrete being extensively used as an alternative to the sand in the production of concrete. There is an increase in need to find new alternative materials to replace river sand so that excess river erosion is prevented and high strength concrete is obtained at lower cost. One such material is building construction debris: a by-product obtained during construction and demolition waste. An experimental investigation is carried out on M 25 concrete containing debris during construction in the different range of 20%, 30% & 40% by weight of sand. Material was produced, tested and compared with conventional concrete in terms of workability and strength. These tests were carried out on standard cube of 150×150×150 mm and beam of 700×150×150 mm for 28 days to determine the mechanical properties of concrete.


Author(s):  
Sangavi D ◽  
Angu Senthil K

A Rise in urbanization and industrialization has led to over utilization of natural river sand, which affects environmental sustainability. Nowadays, due to the massive demand of river sand, M-sand has been replaced effectively and being used in the construction industry. Although M-Sand is desirably used, it can lead to more water and cement requirement to achieve the expected workability which in turn increases the cost of construction. Thus as an alternative solution, industrial by-product like waste foundry sand can be used. When sand can no-longer be reused in the foundry, it is known as waste foundry sand. As it is discarded in a landfill, it tends to pose several environmental impacts. In order to reduce the disposal problem, waste foundry sand is reused in engineering applications. In this paper, various strength and durability properties have been studied, and an overview of some of the research works on the utilization of waste foundry sand in concrete were given. Fine aggregate is replaced with different proportions of waste foundry sand (0-100%). From the results obtained, the optimum % replacement of foundry sand is found to be in the range of 20% to 40% based on the grade of concrete.


Sign in / Sign up

Export Citation Format

Share Document