scholarly journals Comparison of Conventional Concrete and Replacement of River Sand by Waste Foundry Sand and Cement by Nano-Silica

This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7420
Author(s):  
Kalyana Chakravarthy Polichetty Raja ◽  
Ilango Thaniarasu ◽  
Mohamed Abdelghany Elkotb ◽  
Khalid Ansari ◽  
C Ahamed Saleel

The demand for natural aggregates (river sand) is increasing day by day, leading to the destruction of the environment, a burden that will be passed on to young people. Further, wastes from various industries are being dumped in landfills, which poses serious environmental problems. In order to ensure sustainability, both the issues mentioned above can be solved by utilizing industrial waste as aggregate replacement in the concrete construction industry. This research is done to find out the results using two substances viz., waste foundry sand (WFS) and coconut shell (CS) substitute for river sand and coarse aggregate. Many researchers have found the maximum benefits of substituted substances used in cement, which has material consistency. This current observation explores these strong waste properties of waste-infused concrete and cement, which experience shrinkage from drying out. The replacement levels for waste foundry sand were varied, between 10%, 20%, and 30%, and for CS, it was 10% and 20%. The experimental outcomes are evident for the strength, which increases by using WFS, whereas the strength decreases by increasing the CS level. The concrete that experiences shrinkage from drying out is included in the waste material, showing a higher magnitude of drying shrinkage than conventional concrete.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Naga Rajesh Kanta ◽  
Markandeya Raju Ponnada

Purpose In the construction sector, river sand has turned into a costly material due to various reasons. In the current study, used foundry sand (UFS) and spent garnet sand (SGS) are used as a partial and full replacement to sand in concrete production. Design/methodology/approach The objective of the work is to develop non-conventional concrete by replacing river sand with a combination of UFS (constant 20Wt.% replacement) and SGS at various percentages (20, 40, 60 and 80 Wt.%). Findings Compared to conventional concrete, the 28 days compressive strength of non-conventional concrete (with UFS at 20% and spent garnet sand at 20%, 40% and 60% were 8.12%, 6.77% and 0.83% higher, respectively. The 28 days split tensile strength of non-conventional concrete (UFS at 20% and SGS at 20 and 40%) were 32.2% and 51.6% higher, respectively. Research limitations/implications It can be concluded that 60 Wt.% of river sand can be combined replaced with 20 Wt.% UFS and 40 Wt.% SGS to produce good quality concrete whose properties are on par with conventional concrete. Practical implications The results showed that combined SGS and UFS can be used as a partial replacement of river sand in the manufacturing of concrete that is used in all the applications of construction sector such as buildings, bridges, dams, etc. and non-structural applications such as drainpipes, kerbs, etc. Social implications Disposal of industrial by-product wastes such as SGS and UFS affects the environment. A sincere attempt is made to use the same as partial replacement of river sand. Originality/value Based on the literature study, no work is carried out in replacing the river sand combined with SGS and UFS in concrete.


2019 ◽  
Vol 11 (17) ◽  
pp. 4647 ◽  
Author(s):  
Warati ◽  
Darwish ◽  
Feyessa ◽  
Ghebrab

The increase in the demand for concrete production for the development of infrastructures in developing countries like Ethiopia leads to the depletion of virgin aggregates and high cement demand, which imposes negative environmental impacts. In sustainable development, there is a need for construction materials to focus on the economy, efficient energy utilization, and environmental protections. One of the strategies in green concrete production is the use of locally available construction materials. Scoria is widely available around the central towns of Ethiopia, especially around the rift valley regions where huge construction activities are taking place. The aim of this paper is therefore to analyze the suitability of scoria as a fine aggregate for concrete production and its effect on the properties of concrete. A differing ratio of scoria was considered as a partial replacement of fine aggregate with river sand after analyzing its engineering properties, and its effect on the mechanical properties of concrete were examined. The test results on the engineering properties of scoria revealed that the material is suitable to be used as a fine aggregate in concrete production. The replacement of scoria with river sand also enhanced the mechanical strength of the concrete. Generally, the findings of the experimental study showed that scoria could replace river sand by up to 50% for conventional concrete production.


2019 ◽  
Vol 8 (3) ◽  
pp. 1982-1988

Use of agro and industrial wastes in concrete production will cause sustainable concrete era and greener habitat. In this study an endeavor has been made to discover the propriety of Sugarcane Bagasse Ash (SCBA) and Granite Waste (GW) as partial replacement for traditional river sand. The percentage substitute is calculated based on the particle packing approach. The properties such as compressive, splitting tensile, flexural strengths and modulus of elasticity, water absorption, sorptivity and rapid chloride penetration test of the concrete with bagasse ash and granite waste as a partial replacement for river sand and to evaluate them with those of conventional concrete made with river sand fine aggregate are investigated. The test results show that the strength aspects of bagasse ash-granite waste concrete are higher than those of the conventional concrete. Moreover, they suggest that the bagasse ash-granite waste concrete has higher strength characteristics and remains in the lower permeability level shows improvement in overall durability of concrete than the conventional concrete.


Author(s):  
S.O Ajamu ◽  
I.A Raheem ◽  
S.B Attah ◽  
J.O Onicha

Natural river sand is one of the important constituent materials in concrete production while stone dust is a material obtained from crusher plants which is also sometimes being used either partially or fully in replacement of natural river sand in concrete production. Use of stone dust in concrete not only improves the quality of concrete but also conserve the natural river sand. However, due its scarcity and environmental degradation caused resulting from excessive mining of Natural river sand, there is need to investigate an alternative material of the same quality which can replace river sand in concrete production. In the present study, experiments were carried out to study the gradation of aggregates, workability, compressive strength and split tensile strength of concrete made using quarry dust as replacement of fine aggregate at 0, 25, 50, 75, and 100%. Grade M15 of concrete was produced with ordinary Portland cement (OPC) for referral concrete while M25 of concrete was prepared for compressive strength and split tensile strength concrete. Workability and Compressive strength were determined at different replacement level of fine aggregate and optimum replacement level was determined based on compressive strength. Results showed that by replacing 50% of fine aggregate with quarry dust, concrete of maximum compressive strength can be produced as compared to all other replacement levels. The effect of quarry dust on compressive strength and split tensile strength was investigated and from the overall result obtained, it was observed that the compressive strength and split tensile strength increased significantly for all the curing ages from 0% to 50% replacement level of quarry dust. Maximum value obtained for 28day compressive and tensile strength were 25N/mm2 and 2.3N/mm2 respectively and this occurred at 50% replacement.


Author(s):  
Vrishabh V. Zirange

Abstract: Ancient peoples were used mud mortar for their stone houses. The result was a stone home that was both solid and warm and lasted for lifetimes. Mud made houses creates wonderful warm houses as compared to concrete made houses. In the history of construction, clay mortar was followed by lime mortar. Cement manufacturing is one of the major contributors in global warming and climate change. Also fine aggregate is the natural resource and it is limited in nature, thus industrial sand can be alternative for fine aggregate. We are going to use PPC cement because PPC cement resist sulphate attack more than OPC cement and also it is quite cheap. The setting time of the PPC cement is more than OPC cement but when it settled completely then it gives more strength more than OPC cement. Also they used river sand in there project and nowadays there is shortage of river sand that’s why we are going to use foundry sand partially replacement with sand. Foundry sand is a industrial waste sand so we can save money by using foundry sand. The mortar with the alternative fine aggregate, mixed with different combinations of binding materials. We take White clay to River sand proportion as 1:1. In that we partially replace white clay with PPC cement and in other hand River sand partially replaced with Industrial waste(Foundry sand) and also with Rice husk and that mix proportions was tested for 28 days Compressive strength & after curing of 28 days ,cubes cured in acid & alkali solution for Durability strength. The mortar with 20% PPC cement + 80% white clay & 40% foundry sand + 60% river sand (proportion of white clay to river sand is 1:1) has compressive strength in the range of 4.38MPa (Compressive strength) & 4.42Mpa (Compressive strength after Durability test) and these mixes compared with 1:6 conventional mortar proportion, which is acceptable as per the IS code 2250-1981 specification, the minimum strength requirement of mortar to be 3 MPa. Therefore, the use of stabilized mud mortar in construction would prove to be sustainable as well economical. Keywords: Mud mortar, Foundry sand, PPC cement, Compressive strength, Durability test.


Author(s):  
S. T. Bhat ◽  
C. W. Lovell

Flowable fill is generally a mixture of sand, fly ash, a small amount of cement, and water. Sand is the major component of most flowable fill mixes; consequently, using a waste material as a substitute for natural sand results in the beneficial use of the waste material. Waste foundry sand (WFS) was used as a fine aggregate in this study. Three green sands from ferrous foundries and two Class F fly ashes were used. A natural river sand was used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The penetration resistance necessary to sustain walkability as the fresh flowable fill hardens was determined, and the time necessary to achieve this penetration resistance was defined as “walkable time.” The unconfined compressive strength at 28 days appeared to correlate well with the water-to-cement ratio. The 90-day compressive strength test results indicate that a maximum rise of 25 to 30 percent in long-term strength with respect to 28-day strength can be expected. The permeability of hardened flowable fill was found to be low (around 10−6cm/sec). The pH of pore solution of hardened flowable fill indicated that the potential for corrosivity is low. The toxicity tests indicated that some WFSs are environmentally safe. The concepts explained are not necessarily restricted to flowable fill containing WFS; they can be generalized as being applicable to all flowable fills.


In recent days, there is an intense need for an alternate cost effective and sustainable raw material for concrete which does not make the structure inferior in strength. An experimental study on the utilization of the waste plastic and M-sand in the place of river sand and aggregate partially was performed in paper. In the scenario of scarcity of river sand due to the territorial government action and restriction of usage because of the eco and environmental consideration, M-Sand is found to be an effective replacement and cost effective material. Concrete specimens were casted with combination of M-sand and plastic waste with 5%, 10%, 15%, 20% and 25% and compared against control mix. Cube test for compressive strength study, cylinder test for split tensile strength study and prism test for flexural strength study were done with the proposed concert mixture. All the specimens and tests were done for different curing period of 7, 14 and 28 days. The results obtained from the proposed mix of concrete are compared with the conventional concrete mix specimen respectively. The replacement of fine aggregates reduces the quantity of river sand to be used in concrete and also plastic fibres are proved to be more economical. Positive performance of the concrete with waste plastic and M-Sand as partial replacement of river sand was observed on all the experiments and found optimal in sustainable and economical performance.


Sign in / Sign up

Export Citation Format

Share Document