scholarly journals Review of Intelligent Transportation System and Performance Improvement of Routing Protocols for Vehicular Ad-Hoc Networks (VANETs)

Author(s):  
Gaurav Sahu
Author(s):  
Christos Bouras ◽  
Vaggelis Kapoulas ◽  
Enea Tsanai

Vehicular Ad Hoc Networks (VANETs) are considered as a special case of mobile Ad Hoc Networks (MANETs) and are recently gaining a great attention from the research community. The need for improved road safety, traffic efficiency and direct communication along with the great complexity in routing, makes VANETs a highly challenging field. Routing in VANETs has to adapt to special characteristics such as high speed and road pattern movement as well as high linkage break probability. In this work, the authors show that traditional MANET routing protocols cannot efficiently handle the challenges in a VANET environment and thus need further modifications. For this reason, they propose and implement an enhancement mechanism, applied to the GPSR routing protocol that adapts to the needs of a VANET. The proposed mechanism's performance is evaluated through simulation sets for urban and highway scenarios and compared to the performance of the most common MANET routing protocols adopted in VANETs. The proposed enhancement is shown to be considerably beneficial and it significantly outperforms the rest of the tested routing protocols for almost every topology setting.


Author(s):  
Yuh-Shyan Chen ◽  
Yun-Wei Lin

Vehicular Ad hoc Network (VANET), a subclass of mobile ad hoc networks (MANETs), is a promising approach for the intelligent transportation system (ITS). The design of routing protocols in VANETs is important and necessary issue for support the smart ITS. The key difference of VANET and MANET is the special mobility pattern and rapidly changeable topology. It is not effectively applied the existing routing protocols of MANETs into VANETs. In this chapter, we mainly survey new routing results in VANET. The authors introduce unicast protocol, multicast protocol, geocast protocol, mobicast protocol, and broadcast protocol. It is observed that carry-and-forward is the new and key consideration for designing all routing protocols in VANETs. With the consideration of multi-hop forwarding and carryand- forward techniques, min-delay and delay-bounded routing protocols for VANETs are discussed in VANETs. Besides, the temporary network fragmentation problem and the broadcast storm problem are further considered for designing routing protocols in VANETs. The temporary network fragmentation problem caused by rapidly changeable topology influence on the performance of data transmissions. The broadcast storm problem seriously affects the successful rate of message delivery in VANETs. The key challenge is to overcome these problems to provide routing protocols with the low communication delay, the low communication overhead, and the low time complexity.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881505 ◽  
Author(s):  
Ishtiaq Wahid ◽  
Ata Ul Aziz Ikram ◽  
Masood Ahmad ◽  
Fasee Ullah

With resource constraint’s distributed architecture and dynamic topology, network issues such as congestion, latency, power awareness, mobility, and other quality of service issues need to be addressed by optimizing the routing protocols. As a result, a number of routing protocols have been proposed. Routing protocols have trade-offs in performance parameters and their performance varies with the underlying mobility model. For designing an improved vehicular ad hoc network, three components of the network are to be focused: routing protocols, mobility models, and performance metrics. This article describes the relationship of these components, trade-offs in performance, and proposes a supervisory protocol, which monitors the scenario and detects the realistic mobility model through analysis of the microscopic features of the mobility model. An analytical model is used to determine the best protocol for a particular mobility model. The supervisory protocol then selects the best routing protocol for the mobility model of the current operational environment. For this, EstiNet 8.1 Simulator is used to validate the proposed scheme and compare its performance with existing schemes. Simulation results of the proposed scheme show the consistency in the performance of network throughout its operation.


2021 ◽  
Vol 12 (4) ◽  
pp. 1-30
Author(s):  
Zhenchang Xia ◽  
Jia Wu ◽  
Libing Wu ◽  
Yanjiao Chen ◽  
Jian Yang ◽  
...  

Vehicular ad hoc networks ( VANETs ) and the services they support are an essential part of intelligent transportation. Through physical technologies, applications, protocols, and standards, they help to ensure traffic moves efficiently and vehicles operate safely. This article surveys the current state of play in VANETs development. The summarized and classified include the key technologies critical to the field, the resource-management and safety applications needed for smooth operations, the communications and data transmission protocols that support networking, and the theoretical and environmental constructs underpinning research and development, such as graph neural networks and the Internet of Things. Additionally, we identify and discuss several challenges facing VANETs, including poor safety, poor reliability, non-uniform standards, and low intelligence levels. Finally, we touch on hot technologies and techniques, such as reinforcement learning and 5G communications, to provide an outlook for the future of intelligent transportation systems.


Author(s):  
Indrani Das ◽  
Sanjoy Das

Geocasting is a subset of conventional multicasting problem. Geocasting means to deliver a message or data to a specific geographical area. Routing refers to the activities necessary to route a message in its travel from source to the destination node. The routing of a message is very important and relatively difficult problems in the context of Ad-hoc Networks because nodes are moving very fast, network load or traffic patterns, and topology of the network is dynamical changes with time. In this chapter, different geocast routing mechanisms used in both Mobile Ad-hoc Networks and Vehicular Ad-hoc Networks. The authors have shown a strong and in-depth analysis of the strengths and weaknesses of each protocol. For delivering geocast message, both the source and destination nodes use location information. The nodes determine their locations by using the Global Positioning System (GPS). They have presented a comprehensive comparative analysis of existing geocast routing protocols and proposed future direction in designing a new routing protocol addressing the problem.


Sign in / Sign up

Export Citation Format

Share Document