An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks

2018 ◽  
Vol 33 (2) ◽  
pp. 249-262 ◽  
Author(s):  
Seilendria A. Hadiwardoyo ◽  
Subhadeep Patra ◽  
Carlos T. Calafate ◽  
Juan-Carlos Cano ◽  
Pietro Manzoni
2021 ◽  
Vol 12 (4) ◽  
pp. 1-30
Author(s):  
Zhenchang Xia ◽  
Jia Wu ◽  
Libing Wu ◽  
Yanjiao Chen ◽  
Jian Yang ◽  
...  

Vehicular ad hoc networks ( VANETs ) and the services they support are an essential part of intelligent transportation. Through physical technologies, applications, protocols, and standards, they help to ensure traffic moves efficiently and vehicles operate safely. This article surveys the current state of play in VANETs development. The summarized and classified include the key technologies critical to the field, the resource-management and safety applications needed for smooth operations, the communications and data transmission protocols that support networking, and the theoretical and environmental constructs underpinning research and development, such as graph neural networks and the Internet of Things. Additionally, we identify and discuss several challenges facing VANETs, including poor safety, poor reliability, non-uniform standards, and low intelligence levels. Finally, we touch on hot technologies and techniques, such as reinforcement learning and 5G communications, to provide an outlook for the future of intelligent transportation systems.


Author(s):  
Kishor N. Tayade, Et. al.

Vehicular Ad hoc Networks is a promising sub-group of MANET. VANET is deployed on the highways, where the vehicles are mobile nodes. Safety and intelligent transportation are important VANET applications that require appropriate communication among vehicles, in particular routing technology. VANETs generally inherit their common features from MANETs where vehicles operate in a collaborative and dispersed way for promoting contact among vehicles and with network infrastructure like the Road Side Units (RSU) for enhanced traffic experience. In view of the fast growth of Intelligent Transportation Systems (ITS), VANETs has attracted considerable interest in this decade. VANET suffer from a major problem of link failure due to dynamic mobility of vehicles. In this paper we proposed a position based routing algorithm to identify stable path, this will improve the routing by decreasing overhead and interrupting the number of links. Link Expiration Time (LET) is used to provide the stable link, the link with the longest LET is considered as the most stable link. The multicast Ad-hoc On-demand Distance Vector (MAODV) is proposed to avoid the link breakages by using a link with longest LET.  Data loss is reduced by avoiding link breakages and enhance throughput by reducing the communication delay.


Author(s):  
Yuh-Shyan Chen ◽  
Yun-Wei Lin

Vehicular Ad hoc Network (VANET), a subclass of mobile ad hoc networks (MANETs), is a promising approach for the intelligent transportation system (ITS). The design of routing protocols in VANETs is important and necessary issue for support the smart ITS. The key difference of VANET and MANET is the special mobility pattern and rapidly changeable topology. It is not effectively applied the existing routing protocols of MANETs into VANETs. In this chapter, we mainly survey new routing results in VANET. The authors introduce unicast protocol, multicast protocol, geocast protocol, mobicast protocol, and broadcast protocol. It is observed that carry-and-forward is the new and key consideration for designing all routing protocols in VANETs. With the consideration of multi-hop forwarding and carryand- forward techniques, min-delay and delay-bounded routing protocols for VANETs are discussed in VANETs. Besides, the temporary network fragmentation problem and the broadcast storm problem are further considered for designing routing protocols in VANETs. The temporary network fragmentation problem caused by rapidly changeable topology influence on the performance of data transmissions. The broadcast storm problem seriously affects the successful rate of message delivery in VANETs. The key challenge is to overcome these problems to provide routing protocols with the low communication delay, the low communication overhead, and the low time complexity.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 27 ◽  
Author(s):  
Mikhail Buinevich ◽  
Andrei Vladyko

During the last decade there has been an essential development of wireless communication technologies for intelligent transportation system (ITS) applications for motor transport; these advanced infocommunication technologies are called vehicular ad hoc networks (VANET). VANET/ITS, in particular, inform and warn drivers about possible obstacles, and also the possibility of how to organize coordinated actions. Therefore, any violation of its functioning by cyber attacks automatically influences the safety of people and automotive engineering on the road. The purpose of this article is to provide an analytical overview of cyber attacks on VANET/ITS, presented in state-of-the-art publications on this topic by the prediction of its cyber resistance. We start with an analysis of the top 10 cyber threats, considered according to the following schemes: attack mechanism, vulnerability, damage, object of attack, and a counter measure. We then set out a synergistic approach for assessing the cyber resistance of the forward-looking VANET/ITS conceptual model, formed by the merger of the internet of vehicles and software-defined networking technology. Finally, we identify open issues and associated research opportunities, the main ones being the formalization of threats, vulnerability stratification, the choice of the level of network management centralization and, last but not least, the modeling and prediction of VANET/ITS cyber resistance.


2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Muhammad Sameer Sheikh ◽  
Jun Liang

Recently, vehicular ad hoc networks (VANETs) embark a great deal of attention in the area of wireless and communication technology and are becoming one of the prominent research areas in the intelligent transportation system (ITS) because they provide safety and precautionary measures to the drivers and passengers, respectively. VANETs are quite different from the mobile ad hoc networks (MANETs) in terms of characteristics, challenges, system architecture, and their application. In this paper, we summarize the recent state-of-the-art methods of VANETs by discussing their architecture, security, and challenges. Secondly, we discuss the detailed analysis of security schemes and the possible measures to provide secure communication in VANETs. Then, we comprehensively cover the authentication schemes, which is able to protect the vehicular network from malicious nodes and fake messages. Thus, it provides security in VANETs. Thirdly, we cover the mobility and network simulators, as well as other simulation tools, followed by the performance of authentication schemes. Finally, we discuss the comfort and safety applications of VANETs. In sum, this paper comprehensively covers the entire VANET system and its applications by filling the gaps of existing surveys and incorporating the latest trends in VANETs.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4421 ◽  
Author(s):  
Tianjiao Zhang ◽  
Qi Zhu

The media access control (MAC) protocol is a key element in the design of vehicular ad hoc networks (VANETs) that directly affects the network performance. The backoff schemes of existing MAC protocols apply the single backoff process and therefore are not suitable for multi-class data transmission. Additionally, they cannot satisfy the delay requirements of emergency data in the case of varying number of vehicles, causing an adverse effect to the intelligent transportation system (ITS). This paper presents a priority-based adaptive backoff scheme that can enhance the binary exponential backoff (BEB) algorithm as well as the polynomial backoff (QB) algorithm. This system distinguishes priority data with different delay requirements first and designs different backoff schemes for each type of data later. The two-dimensional Markov Chain is used to analyze the backoff scheme and determine the expressions for throughput and delay. The simulation results show that the backoff scheme provided by this paper can reduce the average data delay and regulate each kind of data delay adaptively, according to the varying number of vehicles and different delay requirements.


2021 ◽  
Vol 4 (2) ◽  
pp. 159-164
Author(s):  
Syeda Sundus Zehra ◽  
Syed Muhammad Nabeel Mustafa ◽  
Rehan Qureshi

In achieving Intelligent Transportation System (ITS), a new trending area in networking is Vehicular Ad-hoc Networks (VANETs). It is a sub branch of Mobile Ad-hoc Networks (MANETs) where all the nodes or devices are interlinked and interconnected wirelessly. The challenges that a VANET faces while communicating within a network are signal fading, routing decision making and connectivity hitch. All these three mentioned problems have already been discussed and well researched in history by using conventional techniques as well as intelligent techniques based on artificial intelligence. Amongst all these three issues we are focusing on mitigating decision making problem for optimal route selection. In order to solve this issue, researchers have found that meta-heuristic intelligent algorithms such as, Artificial Bees Colony (ABC) and Firefly Algorithm (FFA) are more efficient algorithms as compared to traditional approach. In this paper we compared ABC and FFA to check which algorithm runs faster in order to achieve routing decision in lesser time


Sign in / Sign up

Export Citation Format

Share Document