scholarly journals Investigation of MRR, TWR and Radial Overcut at Varying Depth of Machining during Die Sinking EDM

Author(s):  
Gulshan Kumar
Keyword(s):  
2020 ◽  
Vol 7 ◽  
pp. 15 ◽  
Author(s):  
S. Kunar ◽  
E. Rajkeerthi ◽  
K. Mandal ◽  
B. Bhattacharyya

Maskless electrochemical micromachining (EMM) is a prominent technique for producing the array of micro circular impressions. A method for producing the array of micro circular impressions on stainless steel workpiece applying maskless electrochemical micromachining process is presented. The experimental setup consists of maskless EMM cell, electrode holding devices, electrical connections of electrodes and constricted vertical cross flow electrolyte system to carry out the experimental investigation. One non-conductive masked patterned tool can produce more than twenty six textured samples with high quality. A mathematical model is developed to estimate theoretically the radial overcut and machining depth of the generated array of micro circular impressions by this process and corroborate the experimental results. This study provides an elementary perceptive about maskless EMM process based on the effects of EMM process variables i.e. pulse frequency and duty ratio on surface characteristics including overcut and machining depth for NaCl, NaNO3 and NaNO3 + NaCl electrolytes. From the experimental investigation, it is observed that the combined effect of lower duty ratio and higher frequency generates the best array of micro circular impressions using the mixed electrolyte of NaNO3 + NaCl with mean radial overcut of 23.31 µm and mean machining depth of 14.1 µm.


2011 ◽  
Vol 199-200 ◽  
pp. 1874-1879
Author(s):  
Shi Chun Di ◽  
Zhao Long Li ◽  
Dong Bo Wei

In this paper, a machining method of deep hole on the nickel-based high-temperature alloy using the pulse electrochemical machining is proposed. The effect of five technological parameters on the depth-averaged radial overcut of the hole to be machined in the machining process is discussed; then the mathematical model is built, and the effect of parameters on the overcut is illustrated. The speed ratio is determined to judge the quality and the processing performance of holes. The technological parameters adopted in the experiment, can be used to produce effectively high-quality hole of big proportion of depth to diameter on the nickel-based high-temperature alloy in the machining process.


2012 ◽  
Vol 12 (1) ◽  
pp. 51-63 ◽  
Author(s):  
Dr. Mohan Kumar Pradhan

AbstractThis article illustrates an application of a hybrid optimization approach for the determination of the optimum machining parameters to achieve better productivity without negotiating the qualities and accuracy of the EDMed components. A synergy of Response Surface Methodology (RSM), Grey Relational Analysis (GRA) coupled with Energy measurement method has been applied that maximises Material Removal Rate (MRR) and simultaneously minimises Tool Wear Rate (TWR) & Radial overcut or Gap(G) during Electrical Discharge Machining (EDM) of AISI D2 Tool steel. The input process parameters considered are pulse current (Ip), pulse duration (Ton), duty cycle (Tau) and discharge voltage (V). A face centered Central Composite Design (CCD) has been adopted for conducting the experiments. The designed experimental results were used in grey relational analysis, and the weights of the quality characteristics were decided by utilizing the entropy measurement method. The significant parameters are obtained by accomplishing Analysis of Variance (ANOVA). Based on the RSM results, it is found that the grey relational grades are considerably influenced by the machining parameters and some of their interactions. Ip is found to be most influencing parameter with 35.02%contribution followed by interaction of Ip×Ton and Tau with 21.74%and 17.73%contribution respectively. The coefficient of determination (R2) is found to be 91.1%which is quite satisfactory. These results furnish useful information to control the responses and ensure the high productivity and accuracy of the component. This method is simple with easy operability, and moreover the results have also been confirmed by running the confirmation tests.


2015 ◽  
Vol 766-767 ◽  
pp. 908-913
Author(s):  
P. Padmini ◽  
S. Senthamilperarasu ◽  
B. Shanmuganathan ◽  
N.R.R. Anbusagar ◽  
P. Sengottuvel

Electrical-discharge Machining (EDM) is a nonconventional machining process utilizing an electric spark discharge from the electrode (-) towards the work piece (+) through the dielectric fluid. The Dimensional accuracy in this is very important consideration for the accuracy of the finished product. The objective of this experimental study is to determine parameters that offer the best dimensional accuracy in electrical discharge machining (EDM). Discharge current (A), Pulse On Time (Ton), Pulse Off Time (Toff ) and Circle,Rectangle,Triangle and Square Tool Geometrical Shapes (Geo) are taken as machining parameters. The experimental investigations are carried out on Monel 400 material using Tungsten copper electrode. The response of ROC is considered for improving the machining efficiency. Optimal combination of parameters was obtained Taguchi Optimization technique. The confirmation experiments results shows that the significant improvement in Radial Overcut was obtained. ANOVA have been used to analyze the contribution of individual parameters on ROC. The experimental result demonstrates that the Taguchi method satisfies the practical requirements


2016 ◽  
Vol 852 ◽  
pp. 160-165 ◽  
Author(s):  
Munmun Bhaumik ◽  
Kalipada Maity ◽  
Kasinath Das Mohapatra

Electro discharge machining (EDM) is a most commonly used machining process among all the non-conventional machining process which removes materials via electrical and thermal energy. The primary goal of EDM is to get more material removal rate (MRR) with lower radial overcut (ROC). Normally, the responses are predicted using empirical models which are limited to only machining parameters and they do not consider the effects of work material properties on the process performance. Therefore in this study, a model has been developed including machining parameter as well as thermo-physical property of work material. In this investigation, a semi-empirical model has been established for the material removal rate (MRR) and radial overcut (ROC) by adopting the dimensional analysis technique. Dimensional analysis is a technique of dimensions and a mathematical technique that deals with the physical quantities concerned with the experiments to formulate a model for the response in terms of response control parameters as well as some physical properties of the materials. Buckingham’s л theorem is a main theorem in dimensional analysis and it is a signification of Rayleigh’s method of dimensional analysis. The theory is applied to gather each and every variable presenting the problem in a number of the dimensionless products. For this study, the thermo-physical properties viz. density, thermal conductivity and coefficient of thermal expansion and machining parameters like peak current, pulse on time, gap voltage and duty cycle are considered as input factor. AISI 304 stainless steel used as work material and Tungsten carbide is used as tool material for this investigation.


Sign in / Sign up

Export Citation Format

Share Document