scholarly journals Research on Fire Resistance Potency of Ferro-Geopolymer Concrete

Author(s):  
N. Senthamilalagan

Fire is also one of the most significant possible threats to most buildings and structures. As structural materials deteriorate due to exposure to high temperatures, the building can collapse. As a result, the use of fire safety materials to mitigate thermal damage to structural members is important. Ferrocement is a cementitious composite substance made of hydraulic cement mortar and tightly spaced layers of continuous and relatively small sized wire mesh. Mortar is an excellent insulator, and reinforcing wire mesh can minimise surface spalling more effectively than plain concrete. Similarly, geopolymer mortar has good fire resistance due to its ceramic-like properties. The performance of ferrocement factor in this study is made of geopolymer and its fire resistance is investigated.

2021 ◽  
Vol 288 ◽  
pp. 123100
Author(s):  
Shanbin Xue ◽  
Peng Zhang ◽  
Junjie Wang ◽  
Jiuwen Bao ◽  
Songbai Han ◽  
...  

2012 ◽  
Vol 628 ◽  
pp. 156-160
Author(s):  
In Kyu Kwon ◽  
Hyung Jun Kim ◽  
Heung Youl Kim ◽  
Bum Yean Cho ◽  
Kyung Suk Cho

Structural steel has been used since the early 1970’s in Korea as primary structural members such as columns, beams, and trusses. The materials have much higher strength such as fast construction, high load bearing capacity, high construction quality but those have a fatal weakness as well. Load-bearing capacity is going down when the structural members are contained in fire condition. Therefore, to protect the structural members made of steels from the heat energy the fire resistance performance required. Generally, the fire resistance performance have evaluated from the exact fire tests in fire furnaces. But the evaluation method takes much more time and higher expenses so, the engineering method requires. The engineering method not only adopts a science but also an engineering experience. In this paper, to make various data-bases for evaluation of structural members such as columns(H-section, RHS), beams, loaded fire tests were conducted and derived not only each limiting temperature but also fire resistance respectively.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-12
Author(s):  
Bill J. Ebenheazar ◽  
Remigildus Cornelis ◽  
Partogi H. Simatupang

Ferro-gepolymer is a type of thin-wall reinforced element constructed of geopolymer cement mortar reinforced with closely spaced relatively small diameter mesh in layers. In this investigation, the flexural and the deflection behavior of the ferro-geopolymer beams were determined numerically and the results compared to the experimental values. All the experimental material properties adopted for numerical modeling. The numerical model of all the five beams was 600 mm effective span, 100 mm width, and 100 mm height. Each specimen of the beam model having different layers of wire mesh that are 3, 5, 7, 9, and 11. The results showed that the greater the number of layers, the variation between numerical and experimental results follows the same path without much difference. The numerical result showed that the greater the number of layers, the strength was increases but insignificant.


2021 ◽  
pp. 12-17
Author(s):  
Юрий Николаевич Шебеко ◽  
Алексей Юрьевич Шебеко

Проведен краткий анализ понятий, связанных с расчетом пределов огнестойкости строительных конструкций. Дано определение термина «фактический предел огнестойкости», которое отсутствует в нормативных документах по пожарной безопасности. Отмечено, что это связано с использованием на практике значений пределов огнестойкости, определенных для стандартных температурных режимов пожара, в то время как на практике указанные температурные режимы, как правило, отличаются от стандартных. Предложена концепция определения фактического предела огнестойкости, основанная на моделировании воздействия на строительную конструкцию температурного режима реального пожара (например, с помощью программного комплекса FDS 6). The brief analysis of definitions connected with estimation of fire resistance limits of building structures is conducted. There is given the determination of term “actual fire resistance limit” that is absent in fire safety normative documents. It is caused by practical application of the fire resistance limits determined for standard temperature regimes of fires only, but at the same time the temperature regimes of real fires as a rule differ from the standard regimes. There is proposed the method for determination of the actual fire resistance limit based on the modeling of influence of the real fire temperature regime on buildings structures. This modeling can be made by an application of CFD methods (for example, with the help of FDS 6 software complex). The required reliability of the building structure is considered. The proposed method can solve the problem of practical applicability of certain structural unit during designing buildings and structures, for which the use of the resistance limits obtained for the standard fire temperature regimes can lead to unjustified economic expenditures without an appropriate elevation of fire safety level of the object.


Fire Safety ◽  
2019 ◽  
pp. 5-9
Author(s):  
O. I. Bashynskiy ◽  
M. Z. Peleshko ◽  
T. G. Berezhanskiy

The article is dedicated to the fire resistance limit of building structures of the objects for the storage of flammable and combustible liquids. Today, oil stores are very important elements of the oil supply system in Ukraine. The analysis of literary sources has shown that fires in oil stores cause extra fire hazard of surrounding objects. Increasing of their scales requires further improvement of fire safety measures during planning and using of oil stores. Fires in such buildings are tricky and large; they cause great harm and often lead to the death of people; their liquidation is very difficult. Theoretical calculations shown that the collapse of structures of the packaged oil stores and, as a result, significant material losses and the threat to people's life and health, were resulted from the incorrect selection of building structures and the discrepancy between the fire resistance of these structures and the applicable norms and requirements for such buildings. Fire Safety, №34, 2019 9 Fire resistance limit of the metal double-T pillar made of steel ВСт3пс4 (profile size number 30) was calculated in the article. Such constructions are used in oil stores. The obtained fire resistance limit of a metal double-T pillar is about 16 minutes (R 16). According to the normative documents for buildings of this type (the degree of fire resistance of the building – III), it should be 120 minutes (R 120). Even if the calculation method has an error due to the choice of another steel grade, objectively none of the double-T profiles from the assortment list would provide proper fire resistance limit.


Sign in / Sign up

Export Citation Format

Share Document