scholarly journals Various Models for the Conversion of Handwritten Text to Digital Text

Author(s):  
Bhavyasri Maddineni

Handwritten Text Recognition (HTR) also known as Handwriting Recognition (HWR) is the detection and interpretation of handwritten text images by the computer. Handwritten text from various sources such as notebooks, documents, forms, photographs, and other devices can be given to the computer to predict and convert into the Computerized Text/Digital Text. Humans find easier to write on a piece of paper rather than typing, but now-a-days everything is being digitalized. So, HTR/HWR has an increasing use these days. There are various techniques used in recognizing the handwriting. Some of the traditional techniques are Character extraction, Character recognition, and Feature extraction, while the modern techniques are segmenting the lines for recognition, machine learning techniques, convolution neural networks, and recurrent neural networks. There are various applications for the HTR/HWR such as the Online recognition, Offline Recognition, Signature verification, Postal address interpretation, Bank-Cheque processing, Writer recognition and these are considered to be the active areas of research. An effective HTR/HWR is therefore needed for the above stated applications. During this project our objective is to find and develop various models of the purpose.

Author(s):  
Rohan Modi

Handwriting Detection is a process or potential of a computer program to collect and analyze comprehensible input that is written by hand from various types of media such as photographs, newspapers, paper reports etc. Handwritten Text Recognition is a sub-discipline of Pattern Recognition. Pattern Recognition is refers to the classification of datasets or objects into various categories or classes. Handwriting Recognition is the process of transforming a handwritten text in a specific language into its digitally expressible script represented by a set of icons known as letters or characters. Speech synthesis is the artificial production of human speech using Machine Learning based software and audio output based computer hardware. While there are many systems which convert normal language text in to speech, the aim of this paper is to study Optical Character Recognition with speech synthesis technology and to develop a cost effective user friendly image based offline text to speech conversion system using CRNN neural networks model and Hidden Markov Model. The automated interpretation of text that has been written by hand can be very useful in various instances where processing of great amounts of handwritten data is required, such as signature verification, analysis of various types of documents and recognition of amounts written on bank cheques by hand.


Author(s):  
Mohamed Elleuch ◽  
Monji Kherallah

In recent years, deep learning (DL) based systems have become very popular for constructing hierarchical representations from unlabeled data. Moreover, DL approaches have been shown to exceed foregoing state of the art machine learning models in various areas, by pattern recognition being one of the more important cases. This paper applies Convolutional Deep Belief Networks (CDBN) to textual image data containing Arabic handwritten script (AHS) and evaluated it on two different databases characterized by the low/high-dimension property. In addition to the benefits provided by deep networks, the system is protected against over-fitting. Experimentally, the authors demonstrated that the extracted features are effective for handwritten character recognition and show very good performance comparable to the state of the art on handwritten text recognition. Yet using Dropout, the proposed CDBN architectures achieved a promising accuracy rates of 91.55% and 98.86% when applied to IFN/ENIT and HACDB databases, respectively.


Handwriting Detection is a technique or ability of a Computer to receive and interpret intelligible handwritten input from source such as paper documents, touch screen, photo graphs etc. Handwritten Text recognition is one of area pattern recognition. The purpose of pattern recognition is to categorizing or classification data or object of one of the classes or categories. Handwriting recognition is defined as the task of transforming a language represented in its spatial form of graphical marks into its symbolic representation. Each script has a set of icons, which are known as characters or letters, which have certain basic shapes. The goal of handwriting is to identify input characters or image correctly then analyzed to many automated process systems. This system will be applied to detect the writings of different format. The development of handwriting is more sophisticated, which is found various kinds of handwritten character such as digit, numeral, cursive script, symbols, and scripts including English and other languages. The automatic recognition of handwritten text can be extremely useful in many applications where it is necessary to process large volumes of handwritten data, such as recognition of addresses and postcodes on envelopes, interpretation of amounts on bank checks, document analysis, and verification of signatures. Therefore, computer is needed to be able to read document or data for ease of document processing.


Author(s):  
Hong Lee ◽  
Brijesh Verma ◽  
Michael Li ◽  
Ashfaqur Rahman

Handwriting recognition is a process of recognizing handwritten text on a paper in the case of offline handwriting recognition and on a tablet in the case of online handwriting recognition and converting it into an editable text. In this chapter, the authors focus on offline handwriting recognition, which means that recognition system accepts a scanned handwritten page as an input and outputs an editable recognized text. Handwriting recognition has been an active research area for more than four decades, but some of the major problems still remained unsolved. Many techniques, including the machine learning techniques, have been used to improve the accuracy. This chapter focuses on describing the problems of handwriting recognition and presents the solutions using machine learning techniques for solving major problems in handwriting recognition. The chapter also reviews and presents the state of the art techniques with results and future research for improving handwriting recognition.


2021 ◽  
Vol 5 (1) ◽  
pp. 21
Author(s):  
Twana Latif Mohammed ◽  
Ahmed Abdullah Ahmed

Handwritten text recognition has been an ongoing attractive task to research in the field of document analysis and recognition with applications in handwriting forensics, paleography, document examination, and handwriting recognition. In the present research, an automatic method of writer recognition is presented using digitized images of unconstrained texts. Despite the increasing efforts by prior literature on the different methods used for the same purpose, such methods performance, particularly their accuracy, has not been promising, leaving plenty of room for improvements. This method made use of codebook-based writer characterization, with each writing sample represented by a group of computed features from a primary and secondary codebook. The writings were then represented through the computation of the probability of codebook patterns occurrence, and the probability distribution was employed for each writer’s characterization. Writer identification process involved comparing two writings through the computation of the distances between their respective probability distribution. The study carried out experiments to determine the performance of the implemented method in light of rates of identification with the help of standard datasets, namely, KRDOH and IAM, the former being the most current and largest Kurdish handwritten datasets with 1076 writers, and the latter being a dataset containing 650 writers. The outcome of the experiments was promising with a rate of identification of 94.3%, with the proposed method outperforming the state-of-the-art methods by 2–3%.


Author(s):  
SIMON GÜNTER ◽  
HORST BUNKE

Handwritten text recognition is one of the most difficult problems in the field of pattern recognition. In this paper, we describe our efforts towards improving the performance of state-of-the-art handwriting recognition systems through the use of classifier ensembles. There are many examples of classification problems in the literature where multiple classifier systems increase the performance over single classifiers. Normally one of the two following approaches is used to create a multiple classifier system. (1) Several classifiers are developed completely independent of each other and combined in a last step. (2) Several classifiers are created out of one prototype classifier by using so-called classifier ensemble creation methods. In this paper an algorithm which combines both approaches is introduced and it is used to increase the recognition rate of a hidden Markov model (HMM) based handwritten word recognizer.


Author(s):  
Jinfang Zeng ◽  
Youming Li ◽  
Yu Zhang ◽  
Da Chen

Environmental sound classification (ESC) is a challenging problem due to the complexity of sounds. To date, a variety of signal processing and machine learning techniques have been applied to ESC task, including matrix factorization, dictionary learning, wavelet filterbanks and deep neural networks. It is observed that features extracted from deeper networks tend to achieve higher performance than those extracted from shallow networks. However, in ESC task, only the deep convolutional neural networks (CNNs) which contain several layers are used and the residual networks are ignored, which lead to degradation in the performance. Meanwhile, a possible explanation for the limited exploration of CNNs and the difficulty to improve on simpler models is the relative scarcity of labeled data for ESC. In this paper, a residual network called EnvResNet for the ESC task is proposed. In addition, we propose to use audio data augmentation to overcome the problem of data scarcity. The experiments will be performed on the ESC-50 database. Combined with data augmentation, the proposed model outperforms baseline implementations relying on mel-frequency cepstral coefficients and achieves results comparable to other state-of-the-art approaches in terms of classification accuracy.


2021 ◽  
Author(s):  
Rogini Runghen ◽  
Daniel B Stouffer ◽  
Giulio Valentino Dalla Riva

Collecting network interaction data is difficult. Non-exhaustive sampling and complex hidden processes often result in an incomplete data set. Thus, identifying potentially present but unobserved interactions is crucial both in understanding the structure of large scale data, and in predicting how previously unseen elements will interact. Recent studies in network analysis have shown that accounting for metadata (such as node attributes) can improve both our understanding of how nodes interact with one another, and the accuracy of link prediction. However, the dimension of the object we need to learn to predict interactions in a network grows quickly with the number of nodes. Therefore, it becomes computationally and conceptually challenging for large networks. Here, we present a new predictive procedure combining a graph embedding method with machine learning techniques to predict interactions on the base of nodes' metadata. Graph embedding methods project the nodes of a network onto a---low dimensional---latent feature space. The position of the nodes in the latent feature space can then be used to predict interactions between nodes. Learning a mapping of the nodes' metadata to their position in a latent feature space corresponds to a classic---and low dimensional---machine learning problem. In our current study we used the Random Dot Product Graph model to estimate the embedding of an observed network, and we tested different neural networks architectures to predict the position of nodes in the latent feature space. Flexible machine learning techniques to map the nodes onto their latent positions allow to account for multivariate and possibly complex nodes' metadata. To illustrate the utility of the proposed procedure, we apply it to a large dataset of tourist visits to destinations across New Zealand. We found that our procedure accurately predicts interactions for both existing nodes and nodes newly added to the network, while being computationally feasible even for very large networks. Overall, our study highlights that by exploiting the properties of a well understood statistical model for complex networks and combining it with standard machine learning techniques, we can simplify the link prediction problem when incorporating multivariate node metadata. Our procedure can be immediately applied to different types of networks, and to a wide variety of data from different systems. As such, both from a network science and data science perspective, our work offers a flexible and generalisable procedure for link prediction.


2020 ◽  
Author(s):  
Georgios Kantidakis ◽  
Hein Putter ◽  
Carlo Lancia ◽  
Jacob de Boer ◽  
Andries E Braat ◽  
...  

Abstract Background: Predicting survival of recipients after liver transplantation is regarded as one of the most important challenges in contemporary medicine. Hence, improving on current prediction models is of great interest.Nowadays, there is a strong discussion in the medical field about machine learning (ML) and whether it has greater potential than traditional regression models when dealing with complex data. Criticism to ML is related to unsuitable performance measures and lack of interpretability which is important for clinicians.Methods: In this paper, ML techniques such as random forests and neural networks are applied to large data of 62294 patients from the United States with 97 predictors selected on clinical/statistical grounds, over more than 600, to predict survival from transplantation. Of particular interest is also the identification of potential risk factors. A comparison is performed between 3 different Cox models (with all variables, backward selection and LASSO) and 3 machine learning techniques: a random survival forest and 2 partial logistic artificial neural networks (PLANNs). For PLANNs, novel extensions to their original specification are tested. Emphasis is given on the advantages and pitfalls of each method and on the interpretability of the ML techniques.Results: Well-established predictive measures are employed from the survival field (C-index, Brier score and Integrated Brier Score) and the strongest prognostic factors are identified for each model. Clinical endpoint is overall graft-survival defined as the time between transplantation and the date of graft-failure or death. The random survival forest shows slightly better predictive performance than Cox models based on the C-index. Neural networks show better performance than both Cox models and random survival forest based on the Integrated Brier Score at 10 years.Conclusion: In this work, it is shown that machine learning techniques can be a useful tool for both prediction and interpretation in the survival context. From the ML techniques examined here, PLANN with 1 hidden layer predicts survival probabilities the most accurately, being as calibrated as the Cox model with all variables.


Author(s):  
Mehmet Fatih Bayramoglu ◽  
Cagatay Basarir

Investing in developed markets offers investors the opportunity to diversify internationally by investing in foreign firms. In other words, it provides the possibility of reducing systematic risk. For this reason, investors are very interested in developed markets. However, developed are more efficient than emerging markets, so the risk and return can be low in these markets. For this reason, developed market investors often use machine learning techniques to increase their gains while reducing their risks. In this chapter, artificial neural networks which is one of the machine learning techniques have been tested to improve internationally diversified portfolio performance. Also, the results of ANNs were compared with the performances of traditional portfolios and the benchmark portfolio. The portfolios are derived from the data of 16 foreign companies quoted on NYSE by ANNs, and they are invested for 30 trading days. According to the results, portfolio derived by ANNs gained 10.30% return, while traditional portfolios gained 5.98% return.


Sign in / Sign up

Export Citation Format

Share Document