scholarly journals Integrated Overview of the Memory System

Author(s):  
Ishanee Das Sharma

This review aims to clarify and classify memory from psychological and neuroscientific point of view, delving into the molecular mechanisms taking place as well. The main forms of memory are sensory memory, short term memory and long-term memory. We also try to specify the flow of information through various memory models. The concept of synaptic plasticity and long-term potentiation is highlighted, with special focus on the physiological parts of the brain that are involved in memory storage. Overall, this study will help expand our knowledge on the intrinsic details of memory storage and the functioning of our brain.

Neuroforum ◽  
2018 ◽  
Vol 24 (3) ◽  
pp. A127-A132
Author(s):  
Marina Mikhaylova ◽  
Michael R. Kreutz

Abstract The storage of memory requires at least in part maintenance of long-term potentiation (LTP) in dendritic spine synapses. Neighboring synapses are frequently arranged into functional clusters. At present, it is still unclear how these clusters evolve, why they are stable for longer time periods and how spines interact within a cluster. In this review, we will provide an overview of current concepts of clustered plasticity and we will discuss cellular as well as molecular mechanisms that might be relevant for spine stability and associated functions in the context of LTP. We will propose that dynamics of initially formed clusters depend on compartmentalization of dendrites and that activity-dependent gene expression kicks in to preserve differences in synaptic weight. We will discuss how mechanisms of synaptic tagging, the presence of secretory organelles in dendrites and the incorporation of synaptic scaling factors that are encoded by immediate early genes interact to preserve clustered plasticity.


1999 ◽  
Vol 6 (2) ◽  
pp. 97-110 ◽  
Author(s):  
Glenn E. Schafe ◽  
Nicole V. Nadel ◽  
Gregory M. Sullivan ◽  
Alexander Harris ◽  
Joseph E. LeDoux

Fear conditioning has received extensive experimental attention. However, little is known about the molecular mechanisms that underlie fear memory consolidation. Previous studies have shown that long-term potentiation (LTP) exists in pathways known to be relevant to fear conditioning and that fear conditioning modifies neural processing in these pathways in a manner similar to LTP induction. The present experiments examined whether inhibition of protein synthesis, PKA, and MAP kinase activity, treatments that block LTP, also interfere with the consolidation of fear conditioning. Rats were injected intraventricularly with Anisomycin (100 or 300 μg), Rp-cAMPS (90 or 180 μg), or PD098059 (1 or 3 μg) prior to conditioning and assessed for retention of contextual and auditory fear memory both within an hour and 24 hr later. Results indicated that injection of these compounds selectively interfered with long-term memory for contextual and auditory fear, while leaving short-term memory intact. Additional control groups indicated that this effect was likely due to impaired memory consolidation rather than to nonspecific effects of the drugs on fear expression. Results suggest that fear conditioning and LTP may share common molecular mechanisms.


2019 ◽  
Vol 4 (40) ◽  
pp. eaay5199 ◽  
Author(s):  
Miguel Ribeiro ◽  
Helena C. Brigas ◽  
Mariana Temido-Ferreira ◽  
Paula A. Pousinha ◽  
Tommy Regen ◽  
...  

The notion of “immune privilege” of the brain has been revised to accommodate its infiltration, at steady state, by immune cells that participate in normal neurophysiology. However, the immune mechanisms that regulate learning and memory remain poorly understood. Here, we show that noninflammatory interleukin-17 (IL-17) derived from a previously unknown fetal-derived meningeal-resident γδ T cell subset promotes cognition. When tested in classical spatial learning paradigms, mice lacking γδ T cells or IL-17 displayed deficient short-term memory while retaining long-term memory. The plasticity of glutamatergic synapses was reduced in the absence of IL-17, resulting in impaired long-term potentiation in the hippocampus. Conversely, IL-17 enhanced glial cell production of brain-derived neurotropic factor, whose exogenous provision rescued the synaptic and behavioral phenotypes of IL-17–deficient animals. Together, our work provides previously unknown clues on the mechanisms that regulate short-term versus long-term memory and on the evolutionary and functional link between the immune and nervous systems.


2016 ◽  
Vol 311 (1) ◽  
pp. R166-R178 ◽  
Author(s):  
Bruce C. Kennedy ◽  
Jiva G. Dimova ◽  
Srikanth Dakoji ◽  
Li-Lian Yuan ◽  
Jonathan C. Gewirtz ◽  
...  

The mounting of appropriate emotional and neuroendocrine responses to environmental stressors critically depends on the hypothalamic-pituitary-adrenal (HPA) axis and associated limbic circuitry. Although its function is currently unknown, the highly evolutionarily conserved transmembrane protein 35 (TMEM35) is prominently expressed in HPA circuitry and limbic areas, including the hippocampus and amygdala. To investigate the possible involvement of this protein in neuroendocrine function, we generated tmem35 knockout (KO) mice to characterize the endocrine, behavioral, electrophysiological, and proteomic alterations caused by deletion of the tmem35 gene. While capable of mounting a normal corticosterone response to restraint stress, KO mice showed elevated basal corticosterone accompanied by increased anxiety-like behavior. The KO mice also displayed impairment of hippocampus-dependent fear and spatial memories. Given the intact memory acquisition but a deficit in memory retention in the KO mice, TMEM35 is likely required for long-term memory consolidation. This conclusion is further supported by a loss of long-term potentiation in the Schaffer collateral-CA1 pathway in the KO mice. To identify putative molecular pathways underlying alterations in plasticity, proteomic analysis of synaptosomal proteins revealed lower levels of postsynaptic molecules important for synaptic plasticity in the KO hippocampus, including PSD95 and N-methyl-d-aspartate receptors. Pathway analysis (Ingenuity Pathway Analysis) of differentially expressed synaptic proteins in tmem35 KO hippocampus implicated molecular networks associated with specific cellular and behavioral functions, including decreased long-term potentiation, and increased startle reactivity and locomotion. Collectively, these data suggest that TMEM35 is a novel factor required for normal activity of the HPA axis and limbic circuitry.


2021 ◽  
Vol 220 (6) ◽  
Author(s):  
Yanrui Yang ◽  
Jiang Chen ◽  
Xue Chen ◽  
Di Li ◽  
Jianfeng He ◽  
...  

Induction of long-term potentiation (LTP) in excitatory neurons triggers a large transient increase in the volume of dendritic spines followed by decays to sustained size expansion, a process termed structural LTP (sLTP) that contributes to the cellular basis of learning and memory. Although mechanisms regulating the early and sustained phases of sLTP have been studied intensively, how the acute spine enlargement immediately after LTP stimulation is achieved remains elusive. Here, we report that endophilin A1 orchestrates membrane dynamics with actin polymerization to initiate spine enlargement in NMDAR-mediated LTP. Upon LTP induction, Ca2+/calmodulin enhances binding of endophilin A1 to both membrane and p140Cap, a cytoskeletal regulator. Consequently, endophilin A1 rapidly localizes to the plasma membrane and recruits p140Cap to promote local actin polymerization, leading to spine head expansion. Moreover, its molecular functions in activity-induced rapid spine growth are required for LTP and long-term memory. Thus, endophilin A1 serves as a calmodulin effector to drive acute structural plasticity necessary for learning and memory.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Niels Hansen

The locus coeruleus is connected to the dorsal hippocampus via strong fiber projections. It becomes activated after arousal and novelty, whereupon noradrenaline is released in the hippocampus. Noradrenaline from the locus coeruleus is involved in modulating the encoding, consolidation, retrieval, and reversal of hippocampus-based memory. Memory storage can be modified by the activation of the locus coeruleus and subsequent facilitation of hippocampal long-term plasticity in the forms of long-term depression and long-term potentiation. Recent evidence indicates that noradrenaline and dopamine are coreleased in the hippocampus from locus coeruleus terminals, thus fostering neuromodulation of long-term synaptic plasticity and memory. Noradrenaline is an inductor of epigenetic modifications regulating transcriptional control of synaptic long-term plasticity to gate the endurance of memory storage. In conclusion, locus coeruleus activation primes the persistence of hippocampus-based long-term memory.


Sign in / Sign up

Export Citation Format

Share Document