scholarly journals Analysis of Load Reduction of Floating Wind Turbines Using Passive Tuned Mass Dampers

Author(s):  
Aabas Ahmad

Abstract: An efficient method for restraining the large vibration displacements and loads of offshore floating wind turbines under harsh marine environment is proposed by putting tuned mass dampers in the cabin. A dynamics model for a barge-type offshore floating wind turbine with a fore–aft tuned mass damper is established based on Lagrange’s equations; the nonlinear least squares Leven berg–Marquardt algorithm is employed to identify the parameters of the wind turbine; different parameter optimization methods are adopted to optimize tuned mass damper parameters by considering the standard deviation of the tower top longitudinal displacement as the objective function. Aiming at five typical combined wind and wave load cases under normal running state of the wind turbine, the dynamic responses of the wind turbine with/without tuned mass damper are simulated and the suppression effect of the tuned mass damper is investigated over the wide range of load cases. The results show that when the wind turbine vibrates in the state of damped free vibration, the standard deviation of the tower top longitudinal displacement is decreased approximately 60% in 100 s by the optimized tuned mass damper with the optimum tuned mass damper mass ratio 1.8%. The standard deviation suppression rates of the longitudinal displacements and loads in the tower and blades increase with the tuned mass damper mass ratio when the wind turbine vibrates under the combined wind and wave load cases. When the mass ratio changes from 0.5% to 2%, the maximum suppression rates vary from 20% to 50% correspondingly, which effectively reduce vibration responses of the offshore floating wind turbine. The results of this article preliminarily verify the feasibilities of using a tuned mass damper for restraining vibration of the barge-type offshore floating wind turbine

Author(s):  
Er-Ming He ◽  
Ya-Qi Hu ◽  
Yang Zhang

An efficient method for restraining the large vibration displacements and loads of offshore floating wind turbines under harsh marine environment is proposed by putting tuned mass dampers in the cabin. A dynamics model for a barge-type offshore floating wind turbine with a fore–aft tuned mass damper is established based on Lagrange’s equations; the nonlinear least squares Levenberg–Marquardt algorithm is employed to identify the parameters of the wind turbine; different parameter optimization methods are adopted to optimize tuned mass damper parameters by considering the standard deviation of the tower top longitudinal displacement as the objective function. Aiming at five typical combined wind and wave load cases under normal running state of the wind turbine, the dynamic responses of the wind turbine with/without tuned mass damper are simulated and the suppression effect of the tuned mass damper is investigated over the wide range of load cases. The results show that when the wind turbine vibrates in the state of damped free vibration, the standard deviation of the tower top longitudinal displacement is decreased approximately 60% in 100 s by the optimized tuned mass damper with the optimum tuned mass damper mass ratio 1.8%. The standard deviation suppression rates of the longitudinal displacements and loads in the tower and blades increase with the tuned mass damper mass ratio when the wind turbine vibrates under the combined wind and wave load cases. When the mass ratio changes from 0.5% to 2%, the maximum suppression rates vary from 20% to 50% correspondingly, which effectively reduce vibration responses of the offshore floating wind turbine. The results of this article preliminarily verify the feasibilities of using a tuned mass damper for restraining vibration of the barge-type offshore floating wind turbine.


Tuned mass dampers (TMD) are one of the most reliable devices to control the vibration of the structure. The optimum mass ratio required for a single tuned mass damper (STMD) is evaluated corresponding to the fundamental natural frequency of the structure. The effect of STMD and Multiple tuned mass dampers (MTMD) on a G+20 storey structure are studied to demonstrate the damper’s effectiveness in seismic application. The location and number of tuned mass dampers are studied to give best structural performance in maximum reduction of seismic response for El Centro earthquake data. The analysis results from SAP 2000 software tool shows damper weighing 2.5% of the total weight of the structure effectively reduce the response of the structure. Study shows that introduction of 4-MTMD at top storey can effectively reduce the response by 10% more in comparison to single tuned mass damper. The use of MTMD of same mass ratio that of STMD is more effective in seismic response.


2018 ◽  
Vol 6 (3) ◽  
pp. 102 ◽  
Author(s):  
Arash Hemmati ◽  
Erkan Oterkus

High flexibility of new offshore wind turbines (OWT) makes them vulnerable since they are subjected to large environmental loadings, wind turbine excitations and seismic loadings. A control system capable of mitigating undesired vibrations with the potential of modifying its structural properties depending on time-variant loadings and damage development can effectively enhance serviceability and fatigue lifetime of turbine systems. In the present paper, a model for offshore wind turbine systems equipped with a semi-active time-variant tuned mass damper is developed considering nonlinear soil–pile interaction phenomenon and time-variant damage conditions. The adaptive concept of this tuned mass damper assumes slow change in its structural properties. Stochastic wind and wave loadings in conjunction with ground motions are applied to the system. Damages to soil and tower caused by earthquake strokes are considered and the semi-active control device is retuned to the instantaneous frequency of the system using short-time Fourier transformation (STFT). The performance of semi-active time-variant vibration control is compared with its passive counterpart in operational and parked conditions. The dynamic responses for a single seismic record and a set of seismic records are presented. The results show that a semi-active mass damper with a mass ratio of 1% performs significantly better than a passive tuned mass damper with a mass ratio of 4%.


Author(s):  
Semyung Park ◽  
Matthew A. Lackner ◽  
John Cross-Whiter ◽  
A. Rodriguez Tsouroukdissian ◽  
William La Cava

Floating offshore wind turbines are able to access deeper waters with stronger winds, but also have more complicated dynamic behavior than fixed-bottom offshore turbines, potentially resulting in larger loads. Structural control using tuned mass dampers (TMD) is a promising method for mitigating these loads. Previous research on structural control in wind turbines has typically considered passive devices and operational conditions. In this study, the effects of a passive tuned mass damper and a semi-active tuned mass damper, located at the tower top, are analyzed and simulated for the GE Haliade 150–6MW wind turbine located on the Glosten Pelastar tension-leg platform (TLP). The system is simulated using FASTv8, the wind turbine aero-elastic wind turbine simulator developed by NREL, which includes a TMD module capable of modeling passive and semi-active devices. A pendulum-type TMD developed by ESM GmbH, which can oscillate in the fore-aft and side-side directions, is modelled with non-linear position constraints. Semi-active control is defined using an “on-off” TMD damping based on a “ground-hook” control law. Ultimate limit state (ULS) conditions with a parked rotor are simulated, for two different water depths. The results are analyzed in terms of the load reductions at the tower base, nacelle acceleration reduction, and tendon tensions for the various configurations. The impact of TMD stroke limitations and the sensitivity of the results to water depth are investigated. The results will show that structural control can reduce ULS loads in deep water configurations, but are less effective in shallow water. The dynamics of the system that cause this result will be elucidated. The results will also demonstrate that semi-active control can be an effective strategy to further reduce loads and reduce the TMD stroke.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yulin Si ◽  
Hamid Reza Karimi ◽  
Huijun Gao

Floating wind turbine will suffer from more fatigue and ultimate loads compared with fixed-bottom installation due to its floating foundation, while structural control offers a possible solution for direct load reduction. This paper deals with the modelling and parameter tuning of a spar-type floating wind turbine with a tuned mass damper (TMD) installed in nacelle. First of all, a mathematical model for the platform surge-heave-pitch motion and TMD-nacelle interaction is established based on D’Alembert’s principle. Both intrinsic dynamics and external hydro and mooring effects are captured in the model, while tower flexibility is also featured. Then, different parameter tuning methods are adopted to determine the TMD parameters for effective load reduction. Finally, fully coupled nonlinear wind turbine simulations with different designs are conducted in different wind and wave conditions. The results demonstrate that the design of TMD with small spring and damping coefficients will achieve much load reduction in the above rated condition. However, it will deteriorate system performance when the turbine is working in the below rated or parked situations. In contrast, the design with large spring and damping constants will produce moderate load reduction in all working conditions.


Author(s):  
Jiajia Yang ◽  
Erming He ◽  
Yaqi Hu

This paper evaluates the application of a passive control technique with a tuned mass damper on platform for the barge-type offshore wind turbine. First of all, the three degrees of freedom mathematical model for the floating wind turbine is established based on Lagrange's equations, and the Levenberg-Marquardt algorithm is adopted to estimate the parameters of the wind turbine. Then, the method of frequency tuning which is utilized in engineering projects and genetic algorithm are employed respectively to simulate the optimum parameters of the tuned mass damper. The vibration mechanism about the phase-angle difference between tuned mass damper and floating platform is analyzed. Finally, the dynamic responses of floating wind turbine with/without tuned mass damper are calculated under five typical wind and wave load cases, and the vibration mitigation effects are researched in marine environment. Partial ballast is substituted by the equal mass of tuned mass damper due to the mass of floating platform with tuned mass damper would increase obviously, which would change the design of the wind turbine, and the vibration mitigation is also simulated in five typical load cases. The results show that the suppression rate of standard deviation of platform pitch is up to 47.95%, after substituting the partial mass of ballast, the suppression rate is 50%. Therefore, the dynamic responses of the barge-type floating wind turbine would be reduced significantly when the ballast is replaced by the equal mass of the tuned mass damper on floating platform.


2018 ◽  
Vol 22 (7) ◽  
pp. 1544-1553 ◽  
Author(s):  
Cong Cong

Simultaneous control of wind turbine blades and tower vibrations is studied in this article. Four active tuned mass dampers have been incorporated into each blade and tower to reduce vibrations. A decentralized constrained H∞ velocity output feedback which restricts the tuned mass damper stroke as a hard constraint is proposed by solving linear matrix inequality. Each active tuned mass damper is driven individually by the output of the corresponding velocity signal. Considering the structural dynamics subjected to gravity, variable rotor speed, and aerodynamic loadings, a model describing dynamics of rotating blades coupled with tower, including the dynamics of active tuned mass dampers, was developed by Euler–Lagrangian formulation. A numerical simulation is carried out to verify the effectiveness of the proposed decentralized control scheme. Investigations show promising results for the active tuned mass damper in simultaneous control blade vibrations and tower vibrations by decentralized control approach. Numerical results demonstrate that the decentralized control has the similar performance compared to centralized control and effectively reduce the displacement of vibrations.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 248
Author(s):  
Lorenzo Cottura ◽  
Riccardo Caradonna ◽  
Alberto Ghigo ◽  
Riccardo Novo ◽  
Giovanni Bracco ◽  
...  

Wind power is emerging as one of the most sustainable and low-cost options for energy production. Far-offshore floating wind turbines are attractive in view of exploiting high wind availability sites while minimizing environmental and landscape impact. In the last few years, some offshore floating wind farms were deployed in Northern Europe for technology validation, with very promising results. At present time, however, no offshore wind farm installations have been developed in the Mediterranean Sea. The aim of this work is to comprehensively model an offshore floating wind turbine and examine the behavior resulting from a wide spectrum of sea and wind states typical of the Mediterranean Sea. The flexible and accessible in-house model developed for this purpose is compared with the reference model FAST v8.16 for verifying its reliability. Then, a simulation campaign is carried out to estimate the wind turbine LCOE (Levelized Cost of Energy). Based on this, the best substructure is chosen and the convenience of the investment is evaluated.


2019 ◽  
Vol 258 ◽  
pp. 05005 ◽  
Author(s):  
Wivia Octarena Nugroho ◽  
Dina Rubiana Widarda ◽  
Oryza Herdha Dwyana

As the need of the train speed increased, the existing bridges need to be evaluated, especially in dynamic responses, which are deformation and acceleration. In this study, Cisomang Bridge is modeled and analyzed due to the high-speed train SJ X2 in varying speeds, 50 km/h, 100 km/h, 150 km/h, and 200 km/h. The used of tuned mass damper also will be varied on its setting and placing. The tuned mass dampers setting be varied based on the first or second natural frequency and the placing of tuned mass damper be varied based on maximum deformation of the first or second mode. Moreover, the tuned mass damper ratio will be varied 1% and 1.6%. For all speed variations, dynamic responses of structure without TMD still fulfil the Indonesian Government Criterion based on PM 60 - 2012 but do not meet requirement of comfort criteria based on DIN-Fachbericht 101. Furthermore, only for the speed train 50km/h dynamic responses of structure fulfil safety criteria based on Eurocode EN 1990:2002, whereas the other speed variations do not meet that requirement. In the use of TMD 1% mass ratio, the structure fulfils the safety criteria for all speed variations. In the use of TMD 1.6% mass ratio, all the structure fulfils the safety and comfort criteria except 100 km/h speed which only fulfils the safety criteria.


Sign in / Sign up

Export Citation Format

Share Document