scholarly journals Production and Characterization of Commercial Aluminum Powders by a New Nozzle Design and Atomization Unit

Author(s):  
Hakan Gokmese

Abstract: A large area cross section of the production of spherical metal powders by gas atomization in the manufacturing method. Powder metal characteristic improves with small powder size. This aim was realized by vertical gas atomization unit, a new a closely-matched nozzle system and manufacture. In the experimental studies, pure aluminium powders which has an important place in the automotive, air and defence industries were produced. In the studies carried out with the Vertical Gas Atomization unit, aluminium was superheated up to 900°C and atomized at different gas pressures (20-30 bar). Scanning electron microscope (SEM) and particle size measuring device were used for the characterization and size measurements of the produced powders, respectively. The average particle size of the finest powder produced with increasing atomization pressure was determined as d50=19.50µm. Aluminium powder shape and morphology was used as spherical and very little satellization was seen. Keywords: Powder Metallurgy, Atomisation, Nozzle, Al powder, Characterisation

2011 ◽  
Vol 291-294 ◽  
pp. 741-744
Author(s):  
Xin An Dang ◽  
Li Li Wang ◽  
Li Jun Yang

On the basis of technologies of gas atomization, supersonic gas atomization, surface effect of electric charge and jet, we design a new-style device of two fluids atomization with the combination of solid atomization and electric field utilizing a LAVAL nozzle, a delivery tube of sectional type and the electrical field dispersion technique. The soldering tin of 63 A was atomized with the air, and the powder prepared was analyzed by optical granularity analyzer, nanometer magnetic particles and Zeta potential analyzer. The results show that the particle size with less than 8μm can reach 75%; the average particle size is 1.7612μm, and the first peak in the distribution curve is about 500 nm, which is an order of magnitude smaller than that the existing reported peak. The compound atomization device can refine the particle size of powers effectively, improve uniformity, yielding rate, and the purity of atomized powders and has a significant effect on atomizing, thus provides powerful supports for preparing ultra fine metal powders with high efficiency and low energy consumption and has a good prospect in application.


2020 ◽  
Vol 989 ◽  
pp. 199-203
Author(s):  
Ivan N. Egorov ◽  
Nikolay Ya. Egorov ◽  
Viktor P. Kryzhanovsky

The paper presents the results of experimental studies of strontium hexa-ferrite average particle size and structural characteristics changes during milling process. Coarse strontium hexaferrite was milled in beater mill, without and with electromagnetic effect. Electromagnetic effect was produced by constant and alternating gradient magnetic fields with mutually perpendicular induction lines. Particle sizes were measured by microscopic methods, and structural characteristics were calculated by processing of X-ray diffractograms. Diffraction studies showed that during milling process, both with and without electromagnetic effect, the most intensive changes of coherent scattering region (CSR) sizes, dislocation densities and relative deformation of particulate material occur at earlier stage of milling. At this stage the speed of average particle size decrease is maximal. At later stage both average particle size and structural characteristic changes correlate and have asymptotic character.


Author(s):  
A.K. Karavaev ◽  
Yu.A. Puchkov

The paper investigates the structure and properties of samples made of ASP-25 AlSi10Mg, a Russian powder designed to replace expensive additive manufacturing powders of European origin featuring the same chemical composition. We detected that the particle size in the ASP-25 AlSi10Mg powder varies in the range of 7 to 50 μm, the average particle size being 23 μm for the standard deviation of 9.15 and dispersion of 83.7. On the surface of powder particles, we observed smaller satellite particles, individual aggregates, and particles of pure aluminium. We detected the following at the transition boundary between adjacent tracks: a columnar crystal zone and a heat-affected zone consisting of three layers of large, medium and small grains generated as a result of varied cooling conditions. These grains display different silicon lattice thicknesses along their boundaries. We detected no critical size pores (over 15 μm) or burning in the heat-affected zone. The fact that microhardness increases towards the sample edges and is non-monotonic over the transverse section is due to a range of factors acting simultaneously to create non-uniform temperature and force fields that cause differences in conditions of structure formation. Fractography studies of fractures in the AlSi10Mg alloy showed that the nature of failure varies along the sample depth. The central part of the sample, which is subjected to the highest thermal effects, shows clear signs of viscous failure along the main cracks developing along the boundaries of construction layers. We showed that the AlSi10Mg alloy is more resistant to pitting corrosion and general corrosion than the AK9сh (AK9ч) alloy


2020 ◽  
Vol 989 ◽  
pp. 801-805
Author(s):  
Evgeniy V. Ageev ◽  
O.G. Loktionova ◽  
A.Y. Altukhov

The main requirement for powders for additive machines is the spherical shape of the particles. Such particles most compactly fit into a certain volume and provide the “fluidity” of the powder composition in the material supply systems with minimal resistance. Based on the peculiarities of the methods of obtaining spherical powders in order to obtain spherical granules of a regulated grain size, the technology of electroerosive dispersion, which is distinguished by relatively low energy costs and ecological cleanliness of the process, is proposed. The main advantage of the proposed technology is the use of waste as raw materials, which is much cheaper than the pure components used in traditional technologies. In addition, this technology is powder, which allows to obtain powder-alloys. The widespread use of the method of EED for the processing of metal waste into powders for the purpose of their reuse and application in additive technologies is hampered by the lack of complete information in the scientific and technical literature on the influence of the original composition, modes and media on the properties of powders and technologies of practical application. Therefore, the development of technologies for the reuse of EED powders and the evaluation of the effectiveness of their use requires the conduct of comprehensive theoretical and experimental studies. The purpose of this work was to obtain and study additive products from electroerosive cobalt-chromium powders of a specific particle size distribution and to study their microstructure. The granulometry of the obtained powders was determined on a laser analyzer of particle sizes “Analysette 22 NanoTec”. The microstructure of additive samples from cobalt-chromium powders (by transverse polishing) was investigated by optical microscopy on an inverted optical microscope OLYMPUS GX51. On the basis of completed studies, aimed at obtaining and studying additive products from electroerosive cobalt-chrome powders of a specific particle size distribution, and studying their microstructure, it was found that additive samples, obtained from a cobalt-chrome powder with an average particle size of 35,68 microns, have practically no pores.


2021 ◽  
pp. 309-312
Author(s):  
E.V. Ageev ◽  
A.S. Pereverzev

The results of experimental studies of the structure and properties of electroerosive materials from lead bronze waste BrS30 obtained in oxygen- and carbon-containing media are presented. The influence of the chemical composition of liquids and technological parameters of dispersion on the properties of the resulting electroerosive materials is shown. In particular, a part of oxygen is present on the surface of particles obtained in distilled water, and part of carbon is present in lighting kerosene. The average particle size obtained in lighting kerosene is 1.2 times higher than the average particle size obtained in distilled water. The particles of the BrS30 alloy dispersed by electroerosion have a regular spherical, elliptical shape and agglomerates.


Sign in / Sign up

Export Citation Format

Share Document