A Study on Novel Gas Atomization Device for Preparing Ultra Fine Metal Powder

2011 ◽  
Vol 291-294 ◽  
pp. 741-744
Author(s):  
Xin An Dang ◽  
Li Li Wang ◽  
Li Jun Yang

On the basis of technologies of gas atomization, supersonic gas atomization, surface effect of electric charge and jet, we design a new-style device of two fluids atomization with the combination of solid atomization and electric field utilizing a LAVAL nozzle, a delivery tube of sectional type and the electrical field dispersion technique. The soldering tin of 63 A was atomized with the air, and the powder prepared was analyzed by optical granularity analyzer, nanometer magnetic particles and Zeta potential analyzer. The results show that the particle size with less than 8μm can reach 75%; the average particle size is 1.7612μm, and the first peak in the distribution curve is about 500 nm, which is an order of magnitude smaller than that the existing reported peak. The compound atomization device can refine the particle size of powers effectively, improve uniformity, yielding rate, and the purity of atomized powders and has a significant effect on atomizing, thus provides powerful supports for preparing ultra fine metal powders with high efficiency and low energy consumption and has a good prospect in application.

Author(s):  
Hakan Gokmese

Abstract: A large area cross section of the production of spherical metal powders by gas atomization in the manufacturing method. Powder metal characteristic improves with small powder size. This aim was realized by vertical gas atomization unit, a new a closely-matched nozzle system and manufacture. In the experimental studies, pure aluminium powders which has an important place in the automotive, air and defence industries were produced. In the studies carried out with the Vertical Gas Atomization unit, aluminium was superheated up to 900°C and atomized at different gas pressures (20-30 bar). Scanning electron microscope (SEM) and particle size measuring device were used for the characterization and size measurements of the produced powders, respectively. The average particle size of the finest powder produced with increasing atomization pressure was determined as d50=19.50µm. Aluminium powder shape and morphology was used as spherical and very little satellization was seen. Keywords: Powder Metallurgy, Atomisation, Nozzle, Al powder, Characterisation


ROTOR ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Havid Arifian Rochman ◽  
Arief Ginanjar Dirgantara ◽  
Salahudin Junus ◽  
Imam Sholahuddin ◽  
Aris Zainul Muttaqin

The synthesis of nanoparticles using thermal DC plasma method is a simple method for ease of installation and high efficiency is due to the rate of precursor that can be controlled. Micro-sized aluminum powder is synthesized using thermal DC plasma undergoing a process of evaporation as it passes through high temperature plasma flame, where kemuadian oxidized aluminum particles which evaporates the particles are split and binds with oxygen to form aluminum oxide or also known as alumina (Al2O3). In this experiment, the flow rate of oxygen plasma parameters at 35 SCFH (Standard Cubic Feet per Hour) and 20 amperes flows with precursors rate variation of 1.16 g / min, 3.19 g / min, and 3.5 g / min. Precursors used is 88 micro sized aluminum powder. To determine the morphology of nanoparticles of alumina testing scanning electron microscopy (SEM), the morphology form of nanosphere. Results of the analysis showed that the rate of precursor low causing agglomeration level slightly while the higher rate of precursor agglomeration rate also increased. At the rate of precursor 1.16 g / min, nanoparikel undergo agglomeration with an average particle size of 36.55 nm, and then at a rate of 3.19 gr precursor / mnt an average particle size of 46.49 nm, and at a rate of 3.5 gr / mnt an average particle size of 46.49 nm. The powder nanoparticles were then characterized using X-ray defraksi (XRD) where all alumina nanoparticles were synthesized showed alumina phase that is formed is a phase δ-Al2O3. Keywords: Alumina nanoparticles, DC Thermal Plasma, morphology, precursor rate, nanoparticles size, SEM, XRD.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 595
Author(s):  
Renfeng Zhu ◽  
Guohua Gu ◽  
Zhixiang Chen ◽  
Yanhong Wang ◽  
Siyu Song

A new method, staged flotation for effectively increasing the recovery of ultra-fine copper oxide ore with a new type of collector (ZH-1, C3-5 carbon chain xanthate) is proposed for the first time. The flotation process and mechanism were examined by flotation tests, entrainment rate analysis, laser particle size experiments and microscopic imagery as well as economic feasibility analysis. It was demonstrated that the collector isoamyl sodium xanthate (ISX) shows a good collection ability (recovery exceeded 95%) for azurite, but the recovery was relatively much lower for malachite (only near 80%) due to the different particle size distribution. The new type of xanthate ZH-1 has shown a high-efficiency collection performance for fine-grained malachite. The recovery achieved for −10 μm malachite was more than 95% when the ZH-1 dosage was 150 mg/L, while the average particle size of −10 μm malachite sharply increased from 4.641 μm to 9.631 μm. The batch flotation results indicated that the copper oxide flotation recovery increased from 79.67% to 83.38%, and the grade also raised from 18.08% to 18.14% after using the staged flotation technology with ZH-1 as collector during the flotation of −25 μm ore. It was confirmed that this technology was quite effective for the recovery of copper oxide at the Dishui Copper Processing Plant, which successfully increased its gross profit by 1.6 million US$ per year.


Sign in / Sign up

Export Citation Format

Share Document