scholarly journals Numerical investigation of the effects of cracking and embedded reinforcement on surface concrete resistivity measurements using Wenner probe

2013 ◽  
Author(s):  
Mustafa Salehi
2020 ◽  
Author(s):  
Karthick Thiyagarajan ◽  
Parikshit Acharya ◽  
Lasitha Piyathilaka ◽  
sarath kodagoda

Smart Sensing technologies can play an important role in the conditional assessment of concrete sewer pipe linings. In the long-term, the permeation of acids can deteriorate the pipe linings. Currently, there are no proven sensors available to non-invasively estimate the depth of acid permeation in real-time. The electrical resistivity measurement on the surface of the linings can indicate the sub-surface acid moisture conditions. In this study, we consider acid permeated linings as a two resistivity layer concrete sample, where the top resistivity layer is assumed to be acid permeated and the bottom resistivity layer indicates normal moisture conditions. Firstly, we modeled the sensor based on the four-probe Wenner method. The measurements of the developed model were compared with the previous studies for validation. Then, the sensor model was utilized to study the effects of electrode contact area, electrode spacing distance and two resistivity layered concrete on the apparent resistivity measurements. All the simulations were carried out by varying the thickness of top resistivity layer concrete. The simulation study indicated that the electrode contact area has very minimal effects on apparent resistivity measurements. Also, an increase in apparent resistivity measurements was observed when there is an increase in the distance of the electrode spacing. Further, a machine learning approach using Gaussian process regression modeling was formulated to estimate the depth of acid permeated layer


2013 ◽  
Vol 577-578 ◽  
pp. 265-268 ◽  
Author(s):  
Václav Veselý ◽  
Petr Konečný ◽  
Petr Lehner ◽  
Přemysl Pařenica ◽  
Jan Hurta ◽  
...  

The paper is focusing on the investigation of the effective crack length obtained from bending test on concrete notched beams with the complementary measurements of electrical resistivity of the tested concrete. The electrical resistivity measurements are performed on several stages of the fracture process along the specimen ligament for each tested notched beam. Gained results of the concrete resistivity during the fracture process, i.e. its dependence on the crack length or opening, provide information which should be taken into account in structural durability analyses. The fracture tests are conducted for a set of specimens differing in the notch length. Changes of the concrete resistivity with increasing effective crack length are observed and discussed.


2002 ◽  
Vol 44 (1) ◽  
pp. 81-99 ◽  
Author(s):  
W Morris ◽  
A Vico ◽  
M Vazquez ◽  
S.R de Sanchez

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7113
Author(s):  
Kevin Paolo V. Robles ◽  
Dong-Won Kim ◽  
Jurng-Jae Yee ◽  
Jin-Wook Lee ◽  
Seong-Hoon Kee

The main objectives of this research are to evaluate the effects of delamination defects on the measurement of electrical resistivity of reinforced concrete slabs through analytical and experimental studies in the laboratory, and to propose a practical guide for electrical resistivity measurements on concrete with delamination defects. First, a 3D finite element model was developed to simulate the variation of electric potential field in concrete over delamination defects with various depths and lateral sizes. Second, for experimental studies, two reinforced concrete slab specimens (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) with artificial delamination defects of various dimensions and depths were fabricated. Third, the electrical resistivity of concrete over delamination defects in the numerical simulation models and the two concrete slab specimens were evaluated by using a 4-point Wenner probe in accordance with AASHTO (American Association of State Highway and Transportation Office) T-358. It was demonstrated from analytical and experimental studies in this study that shallow (50 mm depth) and deep (250 mm depth) delamination defects resulted in higher and lower electrical resistivity (ER) values, respectively, as compared to measurements performed on solid concrete locations. Furthermore, the increase in size of shallow defects resulted in an increase in concrete resistivity, whereas the increase in sizes of deep delamination defects yielded opposite results. In addition, measurements done directly above the steel reinforcements significantly lowered ER values. Lastly, it was observed from experimental studies that the effect of delamination defects on the values of electrical resistivity decreases as the saturation level of concrete increases.


2020 ◽  
Author(s):  
Karthick Thiyagarajan ◽  
Parikshit Acharya ◽  
Lasitha Piyathilaka ◽  
sarath kodagoda

Smart Sensing technologies can play an important role in the conditional assessment of concrete sewer pipe linings. In the long-term, the permeation of acids can deteriorate the pipe linings. Currently, there are no proven sensors available to non-invasively estimate the depth of acid permeation in real-time. The electrical resistivity measurement on the surface of the linings can indicate the sub-surface acid moisture conditions. In this study, we consider acid permeated linings as a two resistivity layer concrete sample, where the top resistivity layer is assumed to be acid permeated and the bottom resistivity layer indicates normal moisture conditions. Firstly, we modeled the sensor based on the four-probe Wenner method. The measurements of the developed model were compared with the previous studies for validation. Then, the sensor model was utilized to study the effects of electrode contact area, electrode spacing distance and two resistivity layered concrete on the apparent resistivity measurements. All the simulations were carried out by varying the thickness of top resistivity layer concrete. The simulation study indicated that the electrode contact area has very minimal effects on apparent resistivity measurements. Also, an increase in apparent resistivity measurements was observed when there is an increase in the distance of the electrode spacing. Further, a machine learning approach using Gaussian process regression modeling was formulated to estimate the depth of acid permeated layer


Author(s):  
N. E. Paton ◽  
D. de Fontaine ◽  
J. C. Williams

The electron microscope has been used to study the diffusionless β → β + ω transformation occurring in certain titanium alloys at low temperatures. Evidence for such a transformation was obtained by Cometto et al by means of x-ray diffraction and resistivity measurements on a Ti-Nb alloy. The present work shows that this type of transformation can occur in several Ti alloys of suitable composition, and some of the details of the transformation are elucidated by means of direct observation in the electron microscope.Thin foils were examined in a Philips EM-300 electron microscope equipped with a uniaxial tilt, liquid nitrogen cooled, cold stage and a high resolution dark field device. Selected area electron diffraction was used to identify the phases present and the ω-phase was imaged in dark field by using a (101)ω reflection. Alloys were water quenched from 950°C, thinned, and mounted between copper grids to minimize temperature gradients in the foil.


Sign in / Sign up

Export Citation Format

Share Document