Numerical investigation of the role of embedded reinforcement mesh on electrical resistivity measurements of concrete using the Wenner probe technique

2014 ◽  
Vol 49 (1-2) ◽  
pp. 301-316 ◽  
Author(s):  
Mustafa Salehi ◽  
Pouria Ghods ◽  
O. Burkan Isgor
2006 ◽  
Vol 966 ◽  
Author(s):  
Ahmad Yazdani ◽  
Reza Osati Araghi ◽  
Farid Arya

ABSTRACTIn order to describe the role of temperature variation on suppress of broad range of magnetic transition, the effect of annealing on different samples of a Gd-based intermetallic compound (i.e., Gd2Au) is investigated. The X-ray, AC and D.C susceptibility and electrical resistivity measurements for different annealed samples revealed that: (i) A great exchange dispersion is observed in A.C susceptibility (ii) This unstable exchange can be stabilized at certain annealing temperature, where the short rang unstable Ferromagnetic (F.M) breaks down or even changes to an Antiferromagnetic (AF.M) stable state. (iii) The DC susceptibility shows a spin-glass like transition temperature at TN= 61 K, above which the compound exhibits a completely paramagnetic (P.M) behavior and is field independent. (iv) the iso-termal magnetization does not follow the field induced transition (F.I.T) and behaves completely as a paramagnet which is independent of the field up to the highest available fields. The electrical resistivity measurement shows: a) A pronounced sharp bend at TN=61 K is manifested in ρ(T). b)some strong peak of X-ray pattern change into double adjacent lines in some intervals of low temperatures


Author(s):  
W. E. King

A side-entry type, helium-temperature specimen stage that has the capability of in-situ electrical-resistivity measurements has been designed and developed for use in the AEI-EM7 1200-kV electron microscope at Argonne National Laboratory. The electrical-resistivity measurements complement the high-voltage electron microscope (HVEM) to yield a unique opportunity to investigate defect production in metals by electron irradiation over a wide range of defect concentrations.A flow cryostat that uses helium gas as a coolant is employed to attain and maintain any specified temperature between 10 and 300 K. The helium gas coolant eliminates the vibrations that arise from boiling liquid helium and the temperature instabilities due to alternating heat-transfer mechanisms in the two-phase temperature regime (4.215 K). Figure 1 shows a schematic view of the liquid/gaseous helium transfer system. A liquid-gas mixture can be used for fast cooldown. The cold tip of the transfer tube is inserted coincident with the tilt axis of the specimen stage, and the end of the coolant flow tube is positioned without contact within the heat exchanger of the copper specimen block (Fig. 2).


1967 ◽  
Vol 6 (47) ◽  
pp. 599-606 ◽  
Author(s):  
Hans Röthlisberger

A brief description of the resistivity method is given, stressing the points which are of particular importance when working on glaciers. The literature is briefly reviewed.


2021 ◽  
Author(s):  
R. Supreeth ◽  
A. Arokkiaswamy ◽  
Anirudh Keshavan ◽  
Pradyumna R. Koushik ◽  
Pramod P. Kashyap ◽  
...  

1991 ◽  
Vol 05 (24n25) ◽  
pp. 1635-1638
Author(s):  
S.M. M.R. NAQVI ◽  
A.A. QIDWAI ◽  
S.M. ZIA-UL-HAQUE ◽  
FIROZ AHMAD ◽  
S.D.H. RIZVI ◽  
...  

Bi1.7-Pb0.3-Sr2-Ca2-Cu3-Ox superconducting samples were prepared at 855°C, 862 C, 870 C, and 882 C sintering temperatures respectively. All samples were sintered for 120 hours. The samples were then quenched in liquid nitrogen. The electrical resistivity measurements showed that the samples sintered at 870° C had the best Tc. For these samples the Tc onset was around 120 K and the zero resistance was obtained at 108 K. X-ray diffraction studies showed that the samples were multiphased.


Sign in / Sign up

Export Citation Format

Share Document