scholarly journals Aplikasi Rajutan Bambu Sebagai Tulangan Balok Beton

2016 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Agostinho Francisco Pinto ◽  
Sri Murni Dewi ◽  
Devi Nurlinah

Need for the use of reinforced concrete in housing construction will increase along with the rapid population growth. This increases the need for steel reinforcement as a major component. The increase in need for steel reinforcement will trigger a price increase so that it becomes expensive and scarce. Iron ore as a raw material for making steel reinforcement is a mineral that can not be renewed. Therefore, efforts to use alternatives to steel reinforcement in concrete. Bamboo has good mechanical properties and a high ratio between strength and weight. Bamboo has a tensile strength is high, between 100-400 MPa, nearly matching the tensile strength equivalent to steel reinforcement ½ to ¼ of iron ultimate voltage (Widjaja, 2001) and (Surjokusumo and Nugroho, 1993) showed similar results and by the Moriscos, 1996 that the tensile strength of bamboo can reach 1280 kg / cm2. Bamboo can be used as the material of reinforced concrete. This study aims to determine the capacity of the bending beam with reinforcement of bamboo, bamboo reinforced beam deflection capacity. This experiment is a concrete beam bending test. The results showed that bamboo reinforced concrete beam has a maximum capacity reached 56.61% of the maximum capacity of steel reinforced concrete.

Author(s):  
Faisal Ananda ◽  
Agoes Soehardjono ◽  
Achfas Zacoeb ◽  
Gunawan Saroji

The classic theory mentions that the assessment of deflection and crack width should be taken to minimize those two behaviors. This research itself has the objective to examine whether the additional fiber steel and increased reinforcement ratio has any significant impact on the deflection and existing crack width. This test used the reinforced concrete beams with a size of 15 cm x 25 cm x 180 cm which placed on a simple pedestal. The test was done gradually in every 108 kg until the reinforced yield reached. The fiber increased from 0%, 1.57%, 3.14% and 4.71% while the performance rebar ratio increased from 2 # 10, 2 # 12, and 2 # 14. The result shows that additional 4.71% of maximum fiber decrease compressive strength and rupture modulus while the tensile strength increased. The additional fiber reached a maximum in 4.71% and the additional diameter of 10 mm, 12 mm, and 14 mm increased the deflections and crack width.


2014 ◽  
Vol 92 ◽  
pp. 74-83 ◽  
Author(s):  
Wanchai Yodsudjai

The applications of using fly ash-based geopolymer as a structural member and a repair materials in reinforced concrete structure was conducted. The optimum mix proportion of fly ash-based geopolymer concrete using for structural beam and fly ash-based geopolymer mortar using for repair material were developed. The flexural behavior of fly ash-based geopolymer reinforced concrete and the durability aspect namely the corrosion of steel reinforcement were investigated using the electrical acceleration. For the repair purpose, the fundamental properties; that is, compressive strength, flexural strength, bonding strength between fly ash-based geopolymer mortar and mortar substrate, setting time and chloride penetration were investigated. Also, the durability of conventional reinforced concrete beam repaired by the fly ash-based geopolymer mortar comparing with the comercial repair mortar was investigated. The behavior of the fly ash-based geopolymer reinforced concrete beam was similar to that of the conventional reinforced concrete beam; however, the corrosion of the steel reinforcement of the fly ash-based geopolymer reinforced concrete beam was higher than that of the conventional reinforced concrete beam. The fundamental properties of the fly ash-based geopolymer mortar were not different from that of the commercial repair materials; however, the durability of the reinforced concrete beam repaired by the fly ash-based geopolymer mortars performed a little lower than that of repaired with the commercial repair motar and also the control reinforced concrete with no repair. As a result, even there will be still a need of improvement there was a good tendency for using the fly ash-based geopolymer as the structural member and the repair materials.


2015 ◽  
Vol 8 ◽  
pp. 148-154 ◽  
Author(s):  
Carlos Guzmán ◽  
Darío Torres ◽  
Cynthia Hucailuk ◽  
Dino Filipussi

1979 ◽  
Vol 6 (3) ◽  
pp. 343-354
Author(s):  
Marc Thenoz ◽  
Claude Bidaud

This paper presents the electronic computer programmes used for the design of standard bridge superstructures by the SETRA (Service d'Etudes techniques des Routes et Autoroutes) of the French Department of Public Works. There is one particular programme for each bridge type. Through these programmes, concrete widths and depths and steel reinforcement are calculated for reinforced concrete beam and slab bridges, and prestressing is designed for prestressed concrete beam and slab bridges.Since February 1, 1962, 11 000 bridges have been designed with these varied and general programmes, suitable for most standard road and freeway overpasses. [Journal translation]


2013 ◽  
Vol 486 ◽  
pp. 211-216
Author(s):  
Jan Zatloukal ◽  
Petr Konvalinka

The flexural behavior of FRP (Fiber Reinforced Polymer) reinforced concrete beam has been the topic of intensive previous research, because of the spread of use of modern FRP composite materials in the building industry as concrete reinforcement. The behavior of FRP reinforced member is different from the one reinforced with regular steel reinforcement, mainly because of vast difference between moduli of elasticity of FRP composite reinforcement bars and steel. This difference results in the fact that conventional design methods used for years in the field of reinforced concrete structures using steel reinforcement give poor results if attempted use with FRP reinforced structural members. Results of conventional methods are so poor that use of such methods would be dangerous they tend to overestimate load carrying capacity and underestimate deformations both resulting in unsafe predictions. This paper points to formulating easy to use and comprehensible method of predicting moment capacity of FRP reinforced concrete beams subjected to bending loading and validation of the proposed method via set of experiments.


2013 ◽  
Vol 744 ◽  
pp. 455-458
Author(s):  
Xue Han ◽  
Zheng Liu ◽  
Xin Xu ◽  
Chao Ge

The beam member should not only meet the requirement of carrying capacity but also has the ability to resist deformation. The calculation of beam deflection mainly boils down to the stiffness calculation in the existing calculation theory of deformation capacity. The flexural stiffness of concrete beams after strengthened with CFRP has been improved greatly. Direct reinforcement and sustained load reinforcement short-term stiffness calculation methods of CFRP reinforced concrete in normal service stage are derived in this article, which could be used for strengthening design.


2017 ◽  
Vol 125 ◽  
pp. 05014
Author(s):  
Chisari Corrado ◽  
Guarnaccia Claudio ◽  
Lamberti Nicola ◽  
Piluso Vincenzo ◽  
Quartieri Joseph ◽  
...  

Mechanika ◽  
2020 ◽  
Vol 26 (4) ◽  
pp. 277-284
Author(s):  
Tadas LISAUSKAS ◽  
Mindaugas AUGONIS ◽  
Tadas ZINGAILA ◽  
Mario Rui Tiago ARRUDA

                           This paper presents experimental, numerical and analytical analysis of newly cast and pre-cracking flexural reinforced concrete beams strengthened with CFRP. In total, 9 intermediate-scale composite beams were cast and tested using 4-point bending test setup. Midspan deflection, width of the cracks, concrete and CFRP strains were measured during the experimental program. Clear efficiency of composite pre-cracked beams was observed in comparison to newly cast beams: enhanced flexural capacity and increased stiffness after appearance of primary cracks in tension zone. Good agreement was found comparing experimental and theoretical (EC2) deflections of RC beams strengthened with CFRP. However, for more detailed verification, the analysis should be extended with more specimens. The shear stress at the end of CFRP sheets between the concrete and CFRP increased rapidly until reaching maximum slip value, when the reinforced concrete beam strengthened with CFRP reaches 60-90 % utilization of load bearing capacity. All experimental results were compared with numerical and analytical calculations. Experimental, numerical and analytical results were in sufficiently good agreement.


2021 ◽  
Vol 10 (2) ◽  
pp. 80-86
Author(s):  
Andi Yusra ◽  
Lissa Opirina ◽  
Teuku Farizal

research on fiber concrete is currently growing very rapidly. The alternative fibers used in the concrete mix-ture is to use natural fibers. In this study, researchers used bamboo fiber as a substitute for artificial fiber, where Bamboo has a good tensile strength. The aim of this study to increase beam strength in sustaining ex-ternal loads by added bamboo fibers. The content of fiber additional to the concrete mixture was 1.5% of the cement weight. The mix design of concrete using ratio of cement water 0.25. The plasticizer and filler added in the mixture with the content of 2% and 15% cement weight, respectively. Two reinforced concrete beam specimens and 24 concrete cylinder specimens used in the study. Tests carried out of 28 days, and 56 days for cylindrical concrete, while bending test conducted of CBR1 and CBR2 at 28 test life only. In study show that addition 1.5% bamboo fiber to reinforced concrete beams increased the flexural capacity and ductility of the beams


Sign in / Sign up

Export Citation Format

Share Document