scholarly journals Implementasi Push Message Dengan Menggunakan Restful Web Service Pada Komunikasi Wireless Sensor

Repositor ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 79
Author(s):  
Rino Nugroho ◽  
Mahar Faiqurahman ◽  
Zamah Sari

Wireless Sensor Network (WSN) is a wireless network consisting of one or more nodes even numbering thousands. The nodes in the wireless sensor network (WSN) consist of sensor nodes and sink nodes. The use of wireless sensors on the network can form a node that can communicate with each other. The communication process generally uses a pull mechanism that precedes the data query process from the node to node sensor that provides sensing data. In some wireless sensor node architecture, this pull mechanism is considered less effective because the node sink must first request data to the sensor node. Alternative, a push message mechanism can be used to transmit sensed data within specified or determined time intervals.In this research is implemented push message mechanism by using restful web service in wireless sensor communications. Test results on the delivery of data by push data transmission obtained to sink nodes alternately in accordance with the order of destination address listed or stored in memory sensor node. And in doing data delivery to be efficient in the absence of data requests at any time.

2013 ◽  
Vol 347-350 ◽  
pp. 1920-1923
Author(s):  
Yu Jia Sun ◽  
Xiao Ming Wang ◽  
Fang Xiu Jia ◽  
Ji Yan Yu

The characteristics and the design factors of wireless sensor network node are talked in this article. According to the design factors of wireless sensor network, this article will mainly point out the design of wireless sensor nodes based a Cortex-M3 Microcontroller STM32F103RE chip. And the wireless communication module is designed with a CC2430 chip. Our wireless sensor node has good performance in our test.


2017 ◽  
Vol 16 (3) ◽  
pp. 50
Author(s):  
I Gusti Putu Mastawan Eka Putra ◽  
Ida Ayu Dwi Giriantari ◽  
Lie Jasa

One implementation of the Internet of Things (IoT) conducted in this study to realize the system of monitoring and control of electrical energy usage-based Wireless Sensor Network (WSN). This research method is the design of wireless sensor nodes that can measure the electrical parameters of alternating current (AC) as effective voltage, effective current, active power, apparent power, power factor and total electrical energy consumption by using modules ESP8266 as a liaison with a Wi-Fi. Calculation of electrical parameters obtained from ATmega328P microcontroller ADC readings of a step-down transformer that is used as a voltage sensor and sensor SCT013 used as AC current sensors will be transmitted to the server over the network from a Wi-Fi Access Point (AP). ESP8266 modules are programmed using AT-Command proven to reliably measure can transmit data simultaneously with serial data format of the wireless sensor node to a server using TCP / IP protocol. Monitoring power consumption via the internet which are designed in the research, either through the Android application and web browser proven to be reliably able to show some electrical parameters with the same data than the data logger recaps taken from SD-Card installed in the wireless sensor node.


Wireless sensor network (WSN) consists of autonomous sensor devices that are spatially distributed in a wide area. Wireless sensor network is built up from a large number of sensor nodes that are assigned to a specific tasks and most probably is monitoring and reporting tasks. However, since the network might be expanded to hundreds, thousands or even millions of sensor nodes, there will be a high chance for the data from different wireless sensor nodes to collide with one another. Therefore, a proper node addressing scheme is needed to synchronize the data packages transmissions to the sink station. In this paper, a seven bytes addressing string scheme is proposed to encapsulate the node data and assist the sink station in identifying the data packages sources. The addressing string will be created in the wireless sensor node which it contains the node ID, package ID and the node data as well. The package ID is included to detect collided packages within the network. The data packages collision is avoided by allowing the sensor node to access the RF channel and transmit the data at a random time. The experimental results reviled that the proposed scheme was successfully addressed the wireless sensor node and make node identification at the sink station easy.


Wireless sensor network plays prominently in various applications of the emerging advanced wireless technology such as smart homes, Commercial, defence sector and modern agriculture for effective communication. There are many issues and challenges involved during the communication process. Energy conservation is the major challenging matter and fascinates issue among the researchers. The reason for that, Wireless sensor network has ‘n’ number of sensor nodes to identify and recognize the data and send that data to the base station or sink through either directly or intermediate node. These nodes with poor energy create intricacy on the data rate or flow and substantially affect the lifespan of a wireless sensor network. To decrease energy utilization the sensor node has to neglect unnecessary received data from the neighbouring nodes prior to send the optimum data to the sink or another device. When a specific target is held in a particular sector, it can be identified by many sensors. To rectify such process this paper present Data agglomeration technique is one of the persuasive techniques in the neglecting unnecessary data and of improves energy efficiency and also it increases the lifetime of WSNs. The efficacious data aggregation paradigm can also decrease traffic in the network. This paper discussed various data agglomeration technique for efficient energy in WSN.


2016 ◽  
Vol 12 (06) ◽  
pp. 20 ◽  
Author(s):  
Li Hua ◽  
Xu Da ◽  
Fuquan Zhao

For the sake of overcoming the shortcoming of some equipment such as complex wiring and much measurement parameter, a wireless state monitoring system is developed based on Zigbee, which was composed of upper monitor control PC, wireless gateway CC2530, sensor node CC2530 and sensor module. By studying the characteristic of the equipment, wireless sensor network of a center controller and six wireless sensor node was made up. Then the nod hardware circuit were designed, the wireless module software was programmed by C language, and furthermore, the user interface software was developed based on LabVIEW. The test is done to show that the system can meet state monitoring requirements for some equipment.


2012 ◽  
Vol 503-504 ◽  
pp. 1514-1517
Author(s):  
Hai Shen Peng

In view of static wireless sensor node deployment efficiency low and dynamic wireless sensor node deployment non-uniform question, proposed based on a sensation environment object minute bunch with the motion proxy node gathering data method, effectively solves wireless sensor node deployment energy management and data collection and so on crucial the technical difficult problems, thus enhances the wireless sensor network the application value


2014 ◽  
Vol 26 (5) ◽  
pp. 616-621 ◽  
Author(s):  
Ningning Wu ◽  
◽  
Juwei Zhang ◽  
Qiangyi Li ◽  
Shiwei Li ◽  
...  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260005/10.jpg"" width=""200"" /> Nodes moving direction in our scheme</div> Wireless sensor network nodes deployment optimization problem is studied and wireless sensor nodes deployment determines its capability and lifetime. The nodes deployment scheme based on the perceived probability model aiming at wireless sensor network nodes which are randomly deployed is designed. The scheme can be used to calculate the perceived probability in the area around wireless sensor network nodes and move the wireless sensor nodes to the low perceived probability area according to the current energy of the wireless sensor node. The simulation results show that this deployment scheme achieves the goal of the nodes reasonable distribution by improving the network coverage and reducing the nodes movement distance and energy consumption. </span>


Author(s):  
Monjul Saikia

The wireless sensor network is a collection of sensor nodes that operate collectively to gather sensitive data from a target area. In the process of data collection the location of sensor nodes from where data is originated matters for taking any decision at the base station. Location i.e. the coordinates of a sensor node need to be shared among other nodes in many circumstances such as in key distribution phase, during routing of packets and many more. Secrecy of the location of every sensor node is important in any such cases. Therefore, there must be a location sharing scheme that facilitates the sharing of location among sensor nodes securely. In this paper, we have proposed a novel secure and robust mechanism for location sharing scheme using 2-threshold secret sharing scheme. The implementation process of the proposed model is shown here along with results and analysis.


2019 ◽  
Vol 16 (9) ◽  
pp. 3925-3931
Author(s):  
Bhupesh Gupta ◽  
Sanjeev Rana

For resource constraint network, one uses wireless sensor network in which limited resources are there for sensor nodes. Basic aim of sensor node is to sense something, monitor it and explain it. The issue arises for sensor node is its battery endurance. The battery endurance of sensor node is consuming in communication instead of sensing. In this regard clustering is using now a day’s which reduces endurance consumption. This paper comes with a new clustering protocol MESAEED (Mutual Exclusive Sleep Awake Energy Efficient Distributed clustering), which helps in saving endurance of sensor nodes so that network lifetime will prolong. It is an extension work of previous work MESADC. In previous work cluster head is chooses on the basis of sleep awake mode in mutual exclusive way under communication range and the results were obtained with the help of comparison graph between HEED and MESADC. The proposed MESAEED protocol provides benefit of A* algorithm of heuristic search, HEED and MESADC. MATLAB 8.3 is use for simulation purpose. The comparison graph between HEED, MESADC and proposed MESAEED were shown. Parameters for comparison include alive nodes versus number of rounds taken and number of nodes dead versus number of rounds taken. The graph shows improvement in performance over HEED and MESADC, which results in enhancing lifetime of WSN.


Sign in / Sign up

Export Citation Format

Share Document