The evaluation of the fire-retardant efficiency of intumescent coatings of steel structures exposed to high-temperature gas flows

2021 ◽  
Vol 30 (4) ◽  
pp. 14-26
Author(s):  
А. Yu. Andryushkin ◽  
A. A. Kirshina ◽  
E. N. Kadochnikova

Introduction. High-temperature gas flows often occur in case of a fire at oil and gas facilities; gas flows out of holes, cracks, ruptures in depressurized items of equipment and pipelines. The fire-retardant efficiency of intumescent coatings of steel structures, exposed to high-temperature gas flows, plummets. Hence, the task of developing a methodology for the adequate assessment of their fire-retardant efficiency is relevant.Goals and objectives. The purpose of the study was to develop a methodology for evaluating the fire-retardant efficiency of intumescent coatings for steel structures exposed to high-temperature gas flows and experimentally evaluate the fire-retardant efficiency of various intumescent coatings. The following research-focused tasks were solved: the evaluation of the velocity of high-temperature gas flows leaving depressurized items that normally operate under pressure; the analysis of the methodology designated for identifying the fire-retardant efficiency of intumescent coatings of steel structures in a calm (sedentary) gaseous medium; the development of a method for evaluating the fire-retardant efficiency of intumescent coatings of steel structures exposed to high-temperature gas flows; the experimental evaluation of the fire-retardant efficiency of various intumescent coatings in a high-temperature gas flow.Methods. The velocity of high-temperature gas flows, leaving depressurized items that normally operate under pressure, has been calculated. The co-authors have analyzed the established methodology used to identify the fire-retardant efficiency of intumescent coatings of steel structures in a steady (sedentary) environment, where gas temperature in a furnace is the only factor taken into account. The co-authors propose a method for evaluating the fire-retardant efficiency of intumescent coatings of steel structures exposed to high-temperature gas flows, which takes into account gas flow temperature and velocity. To evaluate the fire-retardant efficiency of an intumescent coating exposed to a high-temperature gas flow, a coefficient of relative fire resistance is introduced. An experimental evaluation of various intumescent coatings is carried out. It shows a substantial fire- retardant efficiency decrease in a high-temperature gas flow that fosters the hydrocarbon temperature regime.Results and discussion. Mutual aerodynamic and thermal effects of a gas flow substantially reduce the fire- retardant efficiency of intumescent coatings of steel structures, and this is proven by the results of experiments conducted according to the proposed method. The method for evaluating the fire-retardant effectiveness of intumescent coatings of steel structures takes into account the temperature and velocity of a gas flow that affects the sample.Conclusions. It is relevant and necessary to evaluate the fire-retardant efficiency of intumescent coatings of steel structures at oil and gas facilities, operating under pressure, since a substantial decrease in their fire-retardant efficiency is observed in high-temperature gas flows.

2011 ◽  
Vol 354-355 ◽  
pp. 361-364
Author(s):  
Zhan Xu Tie ◽  
Hai Xia Li ◽  
Xiao Dian Guo

The numerical model was established to simulate the gas flow and heat transfer in cement grate cooler. It is useful to increase the gas temperature when the extracting exit position is close to the cement kiln end. The appropriate position of the extracting high temperature gas is about 5 m far away from the cement clinker inlet.


Author(s):  
Chan Soo Kim ◽  
Sung-Deok Hong ◽  
Dong-Un Seo ◽  
Yong-Wan Kim

When a thermocouple is placed in a high temperature gas-flow stream, the measured temperature could be biased from the true gas temperature due to a large radiation heat transfer from a thermocouple surface to its surroundings. In this study, two thermocouples of unequal diameters of 1/8 inch and 1/16 inch were used to correct the radiation effect. This method is called the reduced radiation error (RRE). The test results show that the radiation on the thermocouple sheath tubes is the source of the error in the gas temperature measurement, and the RRE method is very effective for radiation correction under negligible conditions with the conductive dissipation through the sheath tubes.


Author(s):  
Dmitry V. Nesterovich ◽  
Oleg G. Penyazkov ◽  
Yu. A. Stankevich ◽  
M. S. Tretyak ◽  
Vladimir V. Chuprasov ◽  
...  

1999 ◽  
Vol 572 ◽  
Author(s):  
Jingxi Sun ◽  
J. M. Redwing ◽  
T. F. Kuech

ABSTRACTA comparative study of two different MOVPE reactors used for GaN growth is presented. Computational fluid dynamics (CFD) was used to determine common gas phase and fluid flow behaviors within these reactors. This paper focuses on the common thermal fluid features of these two MOVPE reactors with different geometries and operating pressures that can grow device-quality GaN-based materials. Our study clearly shows that several growth conditions must be achieved in order to grow high quality GaN materials. The high-temperature gas flow zone must be limited to a very thin flow sheet above the susceptor, while the bulk gas phase temperature must be very low to prevent extensive pre-deposition reactions. These conditions lead to higher growth rates and improved material quality. A certain range of gas flow velocity inside the high-temperature gas flow zone is also required in order to minimize the residence time and improve the growth uniformity. These conditions can be achieved by the use of either a novel reactor structure such as a two-flow approach or by specific flow conditions. The quantitative ranges of flow velocities, gas phase temperature, and residence time required in these reactors to achieve high quality material and uniform growth are given.


2010 ◽  
Vol 251 ◽  
pp. 012090 ◽  
Author(s):  
R Haynes ◽  
S T Norberg ◽  
S G Eriksson ◽  
M A H Chowdhury ◽  
C M Goodway ◽  
...  

2012 ◽  
Vol 594-597 ◽  
pp. 849-859
Author(s):  
Man Li Ou ◽  
Wei Jun Cao ◽  
Long Min Jiang ◽  
Hui Cao

As the result of great changes occurring to mechanical properties under high temperature (fire) conditions, steel structures will soon lose the strength and stiffness and lead to structural damage. Through analysis of the steel structure fire resistance design methods under the conditions of high temperature (fire), this article explores the most used fire protection methods in steel structures—brushing or painting fire-resistant coatings, studies the fire-resistance theory of steel structure under fire conditions; in addition, the author proposes the reasonable thickness of the steel structure fire retardant coating of fire-resistant design through design examples.


2015 ◽  
Author(s):  
Takeshi Yokomori ◽  
Haruko Nagai ◽  
Hiroshi Shiratori ◽  
Naoki Shino ◽  
Naoki Fujisawa ◽  
...  

2002 ◽  
Vol 2002 (0) ◽  
pp. 93-94
Author(s):  
Yutaka TAKENO ◽  
Yoshinori OTANI ◽  
Hiroaki KANEMOTO

Sign in / Sign up

Export Citation Format

Share Document