scholarly journals Nonlinear calculation of reinforced concrete structures to the impact of the air shock wave

Vestnik MGSU ◽  
2019 ◽  
pp. 33-45 ◽  
Author(s):  
Anton Y. Savenkov ◽  
Oleg V. Mkrtychev

Introduction. Researched methods of accounting for the nonlinear operation of reinforced concrete structures on the example of an industrial structure, when exposed to an air shock wave using modern software systems based on the finite element method. The calculation of reinforced concrete construction to the impact of an air shock wave, if no increased requirements for tightness are presented to it, in accordance with current regulatory documents, must be carried out taking into account the elastic-plastic work, crack opening in the stretched zone of concrete and plastic deformations of reinforcement are allowed. Reviewed by new coupling approach to determining the dynamic loads of a shock wave, implemented in the LS-DYNA software package, which allows to take into account the effects of a long-range explosion and wave-wrapping around a structure. Materials and methods. The study of the stress-strain state of the structures was carried out using numerical simulation. For the nonlinear equivalent-static method, a step-by-step calculation algorithm is used, with gradual accumulation and distribution of stresses, implemented in the LIRA-SAPR software package. For the nonlinear dynamic method, the Lagrangian-Eulerian formulation is used using the methods of gas dynamics in the LS-DYNA software package. Results. As a result of numerical simulation, the following was done analysis of existing methods of nonlinear calculations; analysis of the existing loads during the flow of shock waves around the structure; analysis of the forces and movements in the bearing elements, as well as pictures of the destruction of concrete and reinforcement. Conclusions. According to the results of the comparison of the two approaches, conclusions are drawn about the advantages and disadvantages of the methods. Advantages of nonlinear dynamic calculation methods are noted compared to the equivalent-static ones. Use of the combined approach to the description of the shock wave front gives a reduction in time and allows us to describe the interaction of the wave with the structure with sufficient accuracy. The findings indicate the relevance of the study and provide an opportunity to move to more reasonable computational models.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexander Bulkov ◽  
Michail Baev ◽  
Igor Ovchinnikov

The influence of reinforcing steel corrosion on the durability of reinforced concrete structures of transport structures and the degree of knowledge of this problem is considered. It is specified that the protection of reinforcing steel from corrosion is not able to completely replace the correct design and use of high-strength concrete. But it is able to extend the life of reinforced concrete structures. It is noted that corrosion of the reinforcement leads to a decrease in the structural strength due to wear and tear and by a third of the period of operation of reinforced concrete structures, as a result of which transport structures collapse. As an example of the detrimental effect of corrosion of reinforcing steel on the durability of transport structures, examples of accidents of bridges and overpasses caused by this type of corrosion are given. As a result, a conclusion is drawn on the advisability of ensuring a sufficient level of corrosion protection of reinforcing steel to achieve the required durability of reinforced concrete structures of transport structures. The types and causes of corrosion processes in reinforcing steel reinforced concrete structures are described. The compositions and technologies of anticorrosive protection are examined and analyzed. Comparison of the compositions of anticorrosive protection of reinforced concrete structures is carried out according to the following criteria: consumption, density, viability, curing temperature and the number of components of the composition. A comparison of anti-corrosion protection technologies is carried out on the basis of the following indicators: line dimensions, productivity and consumption of energy resources. A comparison is also made of the cost of using various anti-corrosion protection technologies. Based on the data obtained, the advantages and disadvantages of the considered compositions and technologies of corrosion protection are determined. As a result, the most effective and technologically advanced method of corrosion protection of steel reinforcement of reinforced concrete structures of transport structures is selected.


Author(s):  
Yoshimi Ohta ◽  
Akemi Nishida ◽  
Haruji Tsubota ◽  
Yinsheng Li

Many empirical formulae have been proposed to evaluate the local damage to reinforced concrete structures caused by the impact of rigid projectiles. Most of these formulae have been derived based on impact tests perpendicular to the target structures. To date, few impact tests oblique to the target structures have been conducted. The purpose of this study is to propose a new formula for evaluating the local damage caused by oblique impacts based on experiments and simulations. The new formula is derived by modifying an empirical formulation for normal impact and the agreement with results of past oblique impact tests is discussed.


2009 ◽  
Vol 417-418 ◽  
pp. 345-348 ◽  
Author(s):  
Luca Giordano ◽  
Giuseppe Mancini ◽  
Francesco Tondolo

Corrosion modifies the steel-concrete interface in reinforced concrete structures. The efficiency of the connection between the two materials is reduced and the structural behavior both in service and in ultimate condition is affected. Moreover in structures subjected to cyclic load, a simultaneous mechanical deterioration due to the load is present. In this work an experimental analysis on reinforced concrete structures under both cyclic load and corrosion of reinforcing bars is presented. Three couples of reinforced concrete ties are connected in series and subjected to the same stress variation in order to produce the cracking conditions and to activate the bond mechanism. However, while one of the two reinforced concrete ties is only subjected to cyclic load, the second one is also corroded using an accelerated electrochemical corrosion process. The simultaneous effect of the cyclic load and corrosion is evaluated monitoring the crack opening on the structures during the test and by means of visual inspection of the sample. The test results show the correlation between the mechanism of bond and the average level of stresses for an amplified stress range.


2020 ◽  
Vol 2020 (2) ◽  
pp. 99-106
Author(s):  
Yaroslav Blikharskyy ◽  

This article presents results of a theoretical study of reinforced concrete beams with damaged reinforcement. The change of micro-hardness of a reinforcing rebar’s with a diameter of 20 mm of A500C steel in the radial direction is investigated and the thickness of the heat-strengthened layer is established. It is established that the thickness of the thermo-strengthened steel layer of the reinforcing bar with a diameter of 20 mm of A500C is approximately 3 mm. It is shown that the strength characteristics of this layer are on 50% higher compared to the core material of the rebar, while the plasticity characteristics are lower. The aim of the work is to determine the strength and deformability of reinforced concrete structures without damaging the reinforcement and in case of damage. Determining the impact of changes in the physical characteristics of reinforcement on the damage of reinforced concrete structures, according to the calculation to the valid norms, in accordance with the deformation model. To achieve the goal of the work, theoretical calculations of reinforced concrete beams were performed according to the deformation model, according to valid norms. This technique uses nonlinear strain diagrams of concrete and rebar and is based on an iterative method. According to the research program 3 beam samples were calculated. Among them were undamaged control sample with single load bearing reinforcement of ∅20 mm diameter – BC-1; sample with ∅20 mm reinforcement with damages about 40% without changes in the physical and mechanical properties of reinforcement – BD-2 and sample with ∅20 mm reinforcement with damages about 40% with changes in the physical and mechanical properties of reinforcement – BD-3. The influence of change of physical and mechanical characteristics of rebar’s on bearing capacity of the damaged reinforced concrete beams is established.


Vestnik MGSU ◽  
2021 ◽  
pp. 1357-1362
Author(s):  
Emmanuel Mikerego ◽  
Nestor Niyonzima ◽  
Jean Claude Ntirampeba

Introduction. The article is about an assessment of the impact of impurities contained in the local construction materials on the mechanical characteristics of the concrete used in reinforced concrete structures in Burundi. Materials and methods. The methodology of the study consisted in varying the quantity of impurities for the manufactu­ring of the concrete experimental cubic samples. The grain sizes of the studied ordinary concrete were in the favourable zones according to the recommended granulometry for standard concretes. Simulation of impurities was made by adding in the mixing water solid particles taken from a local rock called “red earth”. The particles were composed by (24 %) of clays, (38 %) of silts and (38 %) of sands. As for the used cement in this study, it was the type CEM I (32.5). The quantities of impurities were expressed in grams per litre of mixing water (g/l) and were varying from (0 g/l) to (100 g/l) with a step of (20 g/l). The prepared experimental concrete samples were stored in the laboratory of materials at the University of Burundi and were subjected to compression testing under hydraulic press after 28 days. Results. The impact of impurities consisting of (24 %) of clays, (38 %) of silts and (38 %) of sands is identified. Each increase of (20 g) of impurities in a litre of mixing water induces an average decrease of (4 %) on the compressive strength and the Young’s modulus for an ordinary concrete. Conclusions. The impact of impurities contained in the local construction materials used in the manufacturing of the concrete for reinforced concrete structures in Burundi is studied. Each increase of (20 g) of impurities in a litre of mixing water induces an average decrease of (4 %) on the compressive strength and the Young’s modulus of an ordinary concrete. For Burundi, a curve for the approximation of the bearing capacity of the concrete used in reinforced concrete structures according to the quantity of impurities contained in the local construction materials was established. Hence, it is advisable to start by the specification of the quantity of impurities contained in the construction materials before making the concrete for reinforced concrete structures in order to predict the mechanical performances of the concrete used in reinforced concrete structures.


2020 ◽  
Vol 264 (4) ◽  
pp. 58-63
Author(s):  
Larysa Bodnar ◽  
◽  
Serhii Zavhorodnii ◽  
Serhii Stepanov ◽  
Vitalii Yastrubinetskyi

Thousands of bridges built in the 20th century are operated on Ukrainian roads. In the limited funding of the road industry of Ukraine, the age of highway bridges is constantly increasing, the number of defects in structures is growing. The largest number of defects is concentrated in the bridge spans. The main part of the bridge spans consists of prefabricated reinforced concrete beams, manufactured in factories of reinforced concrete structures according to standard designs developed in the middle of the last century. As a result of long-term operation of bridges, the shortcomings of these designs which reduce the service life of bridge spans and bridges in general are revealed. The systematic approach is required to study this process. The Analytical Expert Bridge Management System (AESUM) operates in the Ukravtodor system. This software complex accumulates all the information on the results of inspections (certification) of bridges on public roads. The special module AESUM – a database of standard designs of bridge spans which is constantly updated was developed to make decisions on repair works taking into account the features of structures on standard designs, to store this information in a single complex, in electronic form. Standard designs of reinforced concrete bridge spans built and operated on the roads of Ukraine are considered, and a comparative analysis of the features of these designs is performed taking into account the impact on the safety of bridge operation, their main features and shortcomings are given. The concept of rank of the standard design on durability is entered. A formula for estimating the durability of bridge span of a standard design using this concept is proposed. The analysis of durability of bridge span is performed. A number of problematic standard designs have been identified. Keywords: road bridge, standard designs, durability.


Sign in / Sign up

Export Citation Format

Share Document