scholarly journals JMASM 51: Bayesian Reliability Analysis of Binomial Model – Application to Success/Failure Data

2019 ◽  
Vol 17 (2) ◽  
Author(s):  
M. Tanwir Akhtar ◽  
Athar Ali Khan

Reliability data are generated in the form of success/failure. An attempt was made to model such type of data using binomial distribution in the Bayesian paradigm. For fitting the Bayesian model both analytic and simulation techniques are used. Laplace approximation was implemented for approximating posterior densities of the model parameters. Parallel simulation tools were implemented with an extensive use of R and JAGS. R and JAGS code are developed and provided. Real data sets are used for the purpose of illustration.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sanku Dey ◽  
Sophia Waymyers ◽  
Devendra Kumar

AbstractIn this paper, a new probability density function with bounded domain is presented. The new distribution arises from the Lindley distribution proposed in 1958. It presents the advantage of not including any special function in its formulation. The new transformed model, called the reflected-shifted-truncated Lindley distribution can be used to model left-skewed data. We provide a comprehensive treatment of general mathematical and statistical properties of this distribution. We estimate the model parameters by maximum likelihood methods based on complete and right-censored data. To assess the performance and consistency of the maximum likelihood estimators, we conduct a simulation study with varying sample sizes. Finally, we use the distribution to model left-skewed survival and failure data from two real data sets. For the real data sets containing complete data and right-censored data, this distribution is superior in its ability to sufficiently model the data as compared to the power Lindley, exponentiated power Lindley, generalized inverse Lindley, generalized weighted Lindley and the well-known Gompertz distributions.


2021 ◽  
Vol 50 (3) ◽  
pp. 77-105
Author(s):  
Devendra Kumar ◽  
Mazen Nassar ◽  
Ahmed Z. Afify ◽  
Sanku Dey

A new continuous four-parameter lifetime distribution is introduced by compounding the distribution of the maximum of a sequence of an independently identically exponentiated Lomax distributed random variables and zero truncated Poisson random variable, defined as the complementary exponentiated Lomax Poisson (CELP) distribution. The new distribution which exhibits decreasing and upside down bathtub shaped density while the distribution has the ability to model lifetime data with decreasing, increasing and upside-down bathtub shaped failure rates. The new distribution has a number of well-known lifetime special sub-models, such as Lomax-zero truncated Poisson distribution, exponentiated Pareto-zero truncated Poisson distribution and Pareto- zero truncated Poisson distribution. A comprehensive account of the mathematical and statistical properties of the new distribution is presented. The model parameters are obtained by the methods of maximum likelihood, least squares, weighted least squares, percentiles, maximum product of spacing and Cram\'er-von-Mises and compared them using Monte Carlo simulation study. We illustrate the performance of the proposed distribution by means of two real data sets and both the data sets show the new distribution is more appropriate as compared to the transmuted Lomax, beta exponentiated Lomax, McDonald Lomax, Kumaraswamy Lomax, Weibull Lomax, Burr X Lomax and Lomax distributions.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1850
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

Unit distributions are commonly used in probability and statistics to describe useful quantities with values between 0 and 1, such as proportions, probabilities, and percentages. Some unit distributions are defined in a natural analytical manner, and the others are derived through the transformation of an existing distribution defined in a greater domain. In this article, we introduce the unit gamma/Gompertz distribution, founded on the inverse-exponential scheme and the gamma/Gompertz distribution. The gamma/Gompertz distribution is known to be a very flexible three-parameter lifetime distribution, and we aim to transpose this flexibility to the unit interval. First, we check this aspect with the analytical behavior of the primary functions. It is shown that the probability density function can be increasing, decreasing, “increasing-decreasing” and “decreasing-increasing”, with pliant asymmetric properties. On the other hand, the hazard rate function has monotonically increasing, decreasing, or constant shapes. We complete the theoretical part with some propositions on stochastic ordering, moments, quantiles, and the reliability coefficient. Practically, to estimate the model parameters from unit data, the maximum likelihood method is used. We present some simulation results to evaluate this method. Two applications using real data sets, one on trade shares and the other on flood levels, demonstrate the importance of the new model when compared to other unit models.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Author(s):  
Mohamed E. Mead ◽  
Gauss M. Cordeiro ◽  
Ahmed Z. Afify ◽  
Hazem Al Mofleh

Mahdavi A. and Kundu D. (2017) introduced a family for generating univariate distributions called the alpha power transformation. They studied as a special case the properties of the alpha power transformed exponential distribution. We provide some mathematical properties of this distribution and define a four-parameter lifetime model called the alpha power exponentiated Weibull distribution. It generalizes some well-known lifetime models such as the exponentiated exponential, exponentiated Rayleigh, exponentiated Weibull and Weibull distributions. The importance of the new distribution comes from its ability to model monotone and non-monotone failure rate functions, which are quite common in reliability studies. We derive some basic properties of the proposed distribution including quantile and generating functions, moments and order statistics. The maximum likelihood method is used to estimate the model parameters. Simulation results investigate the performance of the estimates. We illustrate the importance of the proposed distribution over the McDonald Weibull, beta Weibull, modified Weibull, transmuted Weibull and exponentiated Weibull distributions by means of two real data sets.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhengyou Xia ◽  
Shengwu Xu ◽  
Ningzhong Liu ◽  
Zhengkang Zhao

The most current news recommendations are suitable for news which comes from a single news website, not for news from different heterogeneous news websites. Previous researches about news recommender systems based on different strategies have been proposed to provide news personalization services for online news readers. However, little research work has been reported on utilizing hundreds of heterogeneous news websites to provide top hot news services for group customers (e.g., government staffs). In this paper, we propose a hot news recommendation model based on Bayesian model, which is from hundreds of different news websites. In the model, we determine whether the news is hot news by calculating the joint probability of the news. We evaluate and compare our proposed recommendation model with the results of human experts on the real data sets. Experimental results demonstrate the reliability and effectiveness of our method. We also implement this model in hot news recommendation system of Hangzhou city government in year 2013, which achieves very good results.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


Stats ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 77-91
Author(s):  
Broderick Oluyede ◽  
Boikanyo Makubate ◽  
Adeniyi Fagbamigbe ◽  
Precious Mdlongwa

A new compound distribution called Burr XII-Weibull-Logarithmic (BWL) distribution is introduced and its properties are explored. This new distribution contains several new and well known sub-models, including Burr XII-Exponential-Logarithmic, Burr XII-Rayleigh-Logarithmic, Burr XII-Logarithmic, Lomax-Exponential-Logarithmic, Lomax–Rayleigh-Logarithmic, Weibull, Rayleigh, Lomax, Lomax-Logarithmic, Weibull-Logarithmic, Rayleigh-Logarithmic, and Exponential-Logarithmic distributions. Some statistical properties of the proposed distribution including moments and conditional moments are presented. Maximum likelihood estimation technique is used to estimate the model parameters. Finally, applications of the model to real data sets are presented to illustrate the usefulness of the proposed distribution.


Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Author(s):  
Ibrahim Elbatal ◽  
A. Aldukeel

In this article, we introduce a new distribution called the McDonald Erlangtruncated exponential distribution. Various structural properties including explicit expressions for the moments, moment generating function, mean deviation of the new distribution are derived. The estimation of the model parameters is performed by maximum likelihood method. The usefulness of the new distribution is illustrated by two real data sets. The new model is much better than other important competitive models in modeling relief times and survival times data sets.


Sign in / Sign up

Export Citation Format

Share Document