scholarly journals A New Right-Skewed Upside Down Bathtub Shaped Heavy-tailed Distribution and its Applications

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sandeep Kumar Maurya ◽  
Sanjay K Singh ◽  
Umesh Singh

A one parameter right skewed, upside down bathtub type, heavy-tailed distribution is derived. Various statistical properties and maximum likelihood approaches for estimation purpose are studied. Five different real data sets with four different models are considered to illustrate the suitability of the proposed model.

2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Author(s):  
Ehab Mohamed Almetwally ◽  
Ahmed Z. Afify ◽  
G. G. Hamedani

In this paper, we introduce a new there-parameter Rayleigh distribution, called the Marshall-Olkin alpha power Rayleigh (MOAPR) distribution. Some statistical properties of the MOAPR distribution are obtained. The proposed model is characterized based on truncated moments and reverse hazard function. The maximum likelihood and bootstrap estimation methods are considered to estimate the MOPAR parameters. A Monte Carlo simulation study is performed to compare the maximum likelihood and bootstrap estimation methods. Superiority of the MOAPR distribution over some well-known distributions is illustrated by means of two real data sets.


2021 ◽  
Vol 9 (4) ◽  
pp. 942-962
Author(s):  
Mohamed Abo Raya

This work introduces a new one-parameter compound G family. Relevant statistical properties are derived. The new density can be “asymmetric right skewed with one peak and a heavy tail”, “symmetric” and “left skewedwith one peak”. The new hazard function can be “upside-down”, “upside-down-constant”, “increasing”, “decreasing” and “decreasing-constant”. Many bivariate types have been also derived via different common copulas. The estimation of the model parameters is performed by maximum likelihood method. The usefulness and flexibility of the new family is illustrated by means of two real data sets.


Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2511-2531 ◽  
Author(s):  
M.S. Eliwa ◽  
M. El-Morshedy

In this paper we have considered one model, namely the bivariate discrete inverse Weibull distribution, which has not been considered in the statistical literature yet. The proposed model is a discrete analogue of Marshall-Olkin inverse Weibull distribution. Some of its important statistical properties are studied. Maximum likelihood and Bayesian methods are used to estimate the model parameters. A detailed simulation study is carried out to examine the bias and mean square error of maximum likelihood and Bayesian estimators. Finally, three real data sets are analyzed to illustrate the importance of the proposedmodel.


Author(s):  
Umar Yusuf Madaki ◽  
Mohd Rizam Abu Bakar ◽  
Laba Handique

We proposed a so-called Beta Kumaraswamy Burr Type X distribution which gives the extension of the Kumaraswamy-G class of family distribution. Some properties of this proposed model were provided, like: the expansion of densities and quantile function. We considered the Bayes and maximum likelihood methods to estimate the parameters and also simulate the model parameters to validate the methods based on different set of true values. Some real data sets were employed to show the usefulness and flexibility of the model which serves as generalization to many sub-models in the field of engineering, medical, survival and reliability analysis.


Author(s):  
Fastel Chipepa ◽  
Boikanyo Makubate ◽  
Broderick Oluyede ◽  
Kethamile Rannona

We present a new class of distributions called the Topp-Leone-G Power Series (TL-GPS) class of distributions. This model is obtained by compounding the Topp-Leone-G distribution with the power series distribution. Statistical prop- erties of the TL-GPS class of distributions are obtained. Maximum likelihood estimates for the proposed model were obtained. A simulation study is carried out for the special case of Topp-Leone Log-Logistic Poisson distribution to assess the performance of the maximum likelihood estimates. Finally, we apply Topp-Leone-log-logistic Poisson distribution to real data sets to illustrate the usefulness and applicability of the proposed class of distributions.


Author(s):  
Umar Yusuf Madaki ◽  
Mohd Rizam Abu Bakar ◽  
Laba Handique

We proposed a so-called Beta Kumaraswamy Burr Type X distribution which gives the extension of the Kumaraswamy-G class of family distribution. Some properties of this proposed model were provided, like: the expansion of densi- ties and quantile function. We considered the Bayes and maximum likelihood methods to estimate the parameters and also simulate the model parameters to validate the methods based on dierent set of true values. Some real data sets were employed to show the usefulness and  exibility of the model which serves as generalization to many sub-models in the elds of engineering, medical, survival and reliability analysis.


Author(s):  
Ibrahim Elbatal

In this work, a new extension of the Inverse Rayleigh model is proposed and studied. We derive some of its fundamental properties. We assess the performance of the maximum likelihood estimators via a simulation study. The importance of the new model is shown via two applications to real data sets. The new model is better fit than other important competitive models based on two real data sets.


2019 ◽  
Vol 8 (2) ◽  
pp. 70 ◽  
Author(s):  
Mustafa C. Korkmaz ◽  
Emrah Altun ◽  
Haitham M. Yousof ◽  
G.G. Hamedani

In this study, a new flexible family of distributions is proposed with its statistical properties as well as some useful characterizations. The maximum likelihood method is used to estimate the unknown model parameters by means of two simulation studies. A new regression model is proposed based on a special member of the proposed family called, the log odd power Lindley Weibull distribution. Residual analysis is conducted to evaluate the model assumptions. Four applications to real data sets are given to demonstrate the usefulness of the proposed model.


2017 ◽  
Vol 2 (4) ◽  
pp. 68-75
Author(s):  
Zubair Ahmad ◽  
Brikhna Iqbal

In this article, a four parameter generalization of the flexible Weibull extension distribution so-called generalized flexible Weibull extension distribution is studied. The proposed model belongs to T-X family of distributions proposed by Alzaatreh et al. [5]. The suggested model is much flexible and accommodates increasing, unimodal and modified unimodal failure rates. A comprehensive expression of the numerical properties and the estimates of the model parameters are obtained using maximum likelihood method. By appropriate choice of parameter values the new model reduces to four sub models. The proposed model is illustrated by means of three real data sets.


Sign in / Sign up

Export Citation Format

Share Document