scholarly journals The Odd Log-Logistic Poisson Inverse Rayleigh Distribution: Statistical Properties and Applications

Author(s):  
Ibrahim Elbatal

In this work, a new extension of the Inverse Rayleigh model is proposed and studied. We derive some of its fundamental properties. We assess the performance of the maximum likelihood estimators via a simulation study. The importance of the new model is shown via two applications to real data sets. The new model is better fit than other important competitive models based on two real data sets.

Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1361
Author(s):  
Héctor J. Gómez ◽  
Diego I. Gallardo ◽  
Osvaldo Venegas

In this article we study the properties, inference, and statistical applications to a parametric generalization of the truncation positive normal distribution, introducing a new parameter so as to increase the flexibility of the new model. For certain combinations of parameters, the model includes both symmetric and asymmetric shapes. We study the model’s basic properties, maximum likelihood estimators and Fisher information matrix. Finally, we apply it to two real data sets to show the model’s good performance compared to other models with positive support: the first, related to the height of the drum of the roller and the second, related to daily cholesterol consumption.


Author(s):  
Hisham Abdel Hamid Elsayed ◽  
Haitham M. Yousof

A new univariate extension of the Fréchet distribution is proposed and studied. Some of its fundamental statistical properties such as stochastic properties, ordinary and incomplete moments, moments generating functions, residual life and reversed residual life functions, order statistics, quantile spread ordering, Rényi, Shannon and q-entropies are derived. A simple type Copula based construction using Morgenstern family and via Clayton Copula is employed to derive many bivariate and multivariate extensions of the new model. We assessed the performance of the maximum likelihood estimators using a simulation study. The importance of the new model is shown by means of two applications to real data sets.


Author(s):  
Hoda Ragab Rezk

Abstract: A new extension of the reciprocal Rayleigh distribution is introduced. Simple type copula-based construction is presented for deriving and many bivariate and multivariate type distributions of the reciprocal Rayleigh model. The new reciprocal Rayleigh model generalizes another three reciprocal Rayleigh distributions. The performance of the estimation method is assessed using a graphical simulation study. The new model is better than some other important competitive models in modeling different real data sets.


2017 ◽  
Vol 6 (6) ◽  
pp. 71
Author(s):  
M- Gharib ◽  
B-I- Mohammed ◽  
W-E-R- Aghel

This paper introduces a new extension of the Inverse Pareto distribution along with in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure criteria. The statistical properties of the new model are discussed and the maximum likelihood and maximum product spacing’s methods are used to estimate the parameters involved. Explicit expressions are derived for the moments and the order statistics are examined for the new proposed model. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.


Author(s):  
M. M. Mansour ◽  
Nadeem Shafique Butt ◽  
Haitham Yousof ◽  
S. I. Ansari ◽  
Mohamed Ibrahim

We introduce a new extension of the reciprocal Exponential distribution for modeling the extreme values. We used the Morgenstern family and the clayton copula for deriving many bivariate and multivariate extensions of the new model. Some of its properties are derived. We assessed the performance of the maximum likelihood estimators (MLEs) via a graphical simulation study. The assessment was based on the sample size. The new reciprocal model is employed for modeling the skewed and the symmetric real data sets. The new reciprocal model is better than some other important competitive models in statistical modeling.


2021 ◽  
Author(s):  
Jakob Raymaekers ◽  
Peter J. Rousseeuw

AbstractMany real data sets contain numerical features (variables) whose distribution is far from normal (Gaussian). Instead, their distribution is often skewed. In order to handle such data it is customary to preprocess the variables to make them more normal. The Box–Cox and Yeo–Johnson transformations are well-known tools for this. However, the standard maximum likelihood estimator of their transformation parameter is highly sensitive to outliers, and will often try to move outliers inward at the expense of the normality of the central part of the data. We propose a modification of these transformations as well as an estimator of the transformation parameter that is robust to outliers, so the transformed data can be approximately normal in the center and a few outliers may deviate from it. It compares favorably to existing techniques in an extensive simulation study and on real data.


Author(s):  
Duha Hamed ◽  
Ahmad Alzaghal

AbstractA new generalized class of Lindley distribution is introduced in this paper. This new class is called the T-Lindley{Y} class of distributions, and it is generated by using the quantile functions of uniform, exponential, Weibull, log-logistic, logistic and Cauchy distributions. The statistical properties including the modes, moments and Shannon’s entropy are discussed. Three new generalized Lindley distributions are investigated in more details. For estimating the unknown parameters, the maximum likelihood estimation has been used and a simulation study was carried out. Lastly, the usefulness of this new proposed class in fitting lifetime data is illustrated using four different data sets. In the application section, the strength of members of the T-Lindley{Y} class in modeling both unimodal as well as bimodal data sets is presented. A member of the T-Lindley{Y} class of distributions outperformed other known distributions in modeling unimodal and bimodal lifetime data sets.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sandeep Kumar Maurya ◽  
Sanjay K Singh ◽  
Umesh Singh

A one parameter right skewed, upside down bathtub type, heavy-tailed distribution is derived. Various statistical properties and maximum likelihood approaches for estimation purpose are studied. Five different real data sets with four different models are considered to illustrate the suitability of the proposed model.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


2020 ◽  
Vol 15 (4) ◽  
pp. 2481-2510
Author(s):  
Fastel Chipepa ◽  
Divine Wanduku ◽  
Broderick Olusegun Oluyede

A new flexible and versatile generalized family of distributions, namely, half logistic odd Weibull-Topp-Leone-G (HLOW-TL-G) distribution is presented. The distribution can be traced back to the exponentiated-G distribution. We derive the statistical properties of the proposed family of distributions. Maximum likelihood estimates of the HLOW-TL-G family of distributions are also presented. Five special cases of the proposed family are presented. A simulation study and real data applications on one of the special cases are also presented


Sign in / Sign up

Export Citation Format

Share Document