scholarly journals Two Different Classes of Shrinkage Estimators for the Scale Parameter of the Rayleigh Distribution

2021 ◽  
Vol 19 (1) ◽  
pp. 2-21
Author(s):  
Talha Omer ◽  
Zawar Hussain ◽  
Muhammad Qasim ◽  
Said Farooq Shah ◽  
Akbar Ali Khan

Shrinkage estimators are introduced for the scale parameter of the Rayleigh distribution by using two different shrinkage techniques. The mean squared error properties of the proposed estimator have been derived. The comparison of proposed classes of the estimators is made with the respective conventional unbiased estimators by means of mean squared error in the simulation study. Simulation results show that the proposed shrinkage estimators yield smaller mean squared error than the existence of unbiased estimators.

2016 ◽  
Vol 5 (1) ◽  
pp. 39 ◽  
Author(s):  
Abbas Najim Salman ◽  
Maymona Ameen

<p>This paper is concerned with minimax shrinkage estimator using double stage shrinkage technique for lowering the mean squared error, intended for estimate the shape parameter (a) of Generalized Rayleigh distribution in a region (R) around available prior knowledge (a<sub>0</sub>) about the actual value (a) as initial estimate in case when the scale parameter (l) is known .</p><p>In situation where the experimentations are time consuming or very costly, a double stage procedure can be used to reduce the expected sample size needed to obtain the estimator.</p><p>The proposed estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y(<strong>×</strong>) and suitable region R.</p><p>Expressions for Bias, Mean squared error (MSE), Expected sample size [E (n/a, R)], Expected sample size proportion [E(n/a,R)/n], probability for avoiding the second sample and percentage of overall sample saved  for the proposed estimator are derived.</p><p>Numerical results and conclusions for the expressions mentioned above were displayed when the consider estimator are testimator of level of significanceD.</p><p>Comparisons with the minimax estimator and with the most recent studies were made to shown the effectiveness of the proposed estimator.</p>


Author(s):  
G. Srinivasa Rao ◽  
Sauda Mbwambo ◽  
P. K. Josephat

This paper considers the estimation of stress–strength reliability when two independent exponential inverse Rayleigh distributions with different shape parameters and common scale parameter. The maximum likelihood estimator (MLE) of the reliability, its asymptotic distribution and asymptotic confidence intervals are constructed. Comparisons of the performance of the estimators are carried out using Monte Carlo simulations, the mean squared error (MSE), bias, average length and coverage probabilities. Finally, a demonstration is delivered on how the proposed reliability model may be applied in data analysis of the strength data for single carbon fibers test data.


2020 ◽  
pp. 2335-2340
Author(s):  
Intesar Obeid Hassoun ◽  
Adel Abdulkadhim Hussein

This paper includes the estimation of the scale parameter of weighted Rayleigh distribution using well-known methods of estimation (classical and Bayesian). The proposed estimators were compared using Monte Carlo simulation based on mean squared error (MSE) criteria. Then, all the results of simulation and comparisons were demonstrated in tables. 


2021 ◽  
Vol 50 (1) ◽  
pp. 59-73
Author(s):  
Young Eun Jeon ◽  
Suk-Bok Kang

We derive some estimators of the scale parameter of the Rayleigh distribution under the unified hybrid censoring scheme. We also derive some estimators of the reliability function and the entropy of the Rayleigh distribution. First, we obtain the maximum likelihood estimator of the scale parameter. Second, we obtain the Bayes estimator using the mean of the posterior distribution. Lastly, we obtain the Bayes estimator using the mode of the posterior distribution. We also derive the interval estimation (confidence interval, credible interval, and HPD credible interval) for the scale parameter under the unified hybrid censoring scheme. We compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation. Coverage probability and average lengths of 95 % and 90% intervals are obtained.


Author(s):  
Tarek Mahmoud Omara

In this paper, we introduce the new biased estimator to deal with the problem of multicollinearity. This estimator is considered a modification of Two-Parameter Ridge-Liu estimator based on ridge estimation. Furthermore, the superiority of the new estimator than Ridge, Liu and Two-Parameter Ridge-Liu estimator were discussed. We used the mean squared error matrix (MSEM) criterion to verify the superiority of the new estimate.  In addition to, we illustrated the performance of the new estimator at several factors through the simulation study.


2021 ◽  
pp. 096228022110342
Author(s):  
Denis Talbot ◽  
Awa Diop ◽  
Mathilde Lavigne-Robichaud ◽  
Chantal Brisson

Background The change in estimate is a popular approach for selecting confounders in epidemiology. It is recommended in epidemiologic textbooks and articles over significance test of coefficients, but concerns have been raised concerning its validity. Few simulation studies have been conducted to investigate its performance. Methods An extensive simulation study was realized to compare different implementations of the change in estimate method. The implementations were also compared when estimating the association of body mass index with diastolic blood pressure in the PROspective Québec Study on Work and Health. Results All methods were susceptible to introduce important bias and to produce confidence intervals that included the true effect much less often than expected in at least some scenarios. Overall mixed results were obtained regarding the accuracy of estimators, as measured by the mean squared error. No implementation adequately differentiated confounders from non-confounders. In the real data analysis, none of the implementation decreased the estimated standard error. Conclusion Based on these results, it is questionable whether change in estimate methods are beneficial in general, considering their low ability to improve the precision of estimates without introducing bias and inability to yield valid confidence intervals or to identify true confounders.


2016 ◽  
Vol 5 (4) ◽  
pp. 162
Author(s):  
Abbas Najim Salman ◽  
Rana Hadi

The present paper deals with the estimation of the shape parameter α of Generalized Exponential GE (α, λ) distribution when the scale parameter λ is known, by using preliminary test single stage shrinkage (SSS) estimator when a prior knowledge available about the shape parameter as initial value due past experiences as well as optimal region R for accepting this prior knowledge.The Expressions for the Bias [B (.)], Mean Squared Error [MSE] and Relative Efficiency [R.Eff (.)] for the proposed estimator is derived.Numerical results about conduct of the considered estimator are discussed include study the mentioned expressions. The numerical results exhibit and put it in tables.Comparisons between the proposed estimator  withe classical estimator  as well as with some earlier studies were made to show the effect and usefulness of the considered estimator.


2020 ◽  
pp. 72-80
Author(s):  
Nada S. Karam ◽  
Shahbaa M. Yousif ◽  
Bushra J. Tawfeeq

In this article we derive two reliability mathematical expressions of two kinds of s-out of -k stress-strength model systems; and . Both stress and strength are assumed to have an Inverse Lomax distribution with unknown shape parameters and a common known scale parameter. The increase and decrease in the real values of the two reliabilities are studied according to the increase and decrease in the distribution parameters. Two estimation methods are used to estimate the distribution parameters and the reliabilities, which are Maximum Likelihood and Regression. A comparison is made between the estimators based on a simulation study by the mean squared error criteria, which revealed that the maximum likelihood estimator works the best.


2020 ◽  
Vol 17 (1(Suppl.)) ◽  
pp. 0361
Author(s):  
Mustafa Ismaeel Naif Alheety

This paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Wang ◽  
Michael O. Harhay

Abstract Background Clustered or correlated outcome data is common in medical research studies, such as the analysis of national or international disease registries, or cluster-randomized trials, where groups of trial participants, instead of each trial participant, are randomized to interventions. Within-group correlation in studies with clustered data requires the use of specific statistical methods, such as generalized estimating equations and mixed-effects models, to account for this correlation and support unbiased statistical inference. Methods We compare different approaches to estimating generalized estimating equations and mixed effects models for a continuous outcome in R through a simulation study and a data example. The methods are implemented through four popular functions of the statistical software R, “geese”, “gls”, “lme”, and “lmer”. In the simulation study, we compare the mean squared error of estimating all the model parameters and compare the coverage proportion of the 95% confidence intervals. In the data analysis, we compare estimation of the intervention effect and the intra-class correlation. Results In the simulation study, the function “lme” takes the least computation time. There is no difference in the mean squared error of the four functions. The “lmer” function provides better coverage of the fixed effects when the number of clusters is small as 10. The function “gls” produces close to nominal scale confidence intervals of the intra-class correlation. In the data analysis and the “gls” function yields a positive estimate of the intra-class correlation while the “geese” function gives a negative estimate. Neither of the confidence intervals contains the value zero. Conclusions The “gls” function efficiently produces an estimate of the intra-class correlation with a confidence interval. When the within-group correlation is as high as 0.5, the confidence interval is not always obtainable.


Sign in / Sign up

Export Citation Format

Share Document