Is it Helpful for Individuals with Minor Depression to Keep Smiling? An Event-Related Potentials Analysis

2015 ◽  
Vol 43 (3) ◽  
pp. 383-396 ◽  
Author(s):  
Wenyi Lin ◽  
Jing Hu ◽  
Yanfei Gong

We used event-related potentials (ERPs) to explore the influence of manipulating facial expression on error monitoring in individuals. The participants were 11 undergraduate students who had been diagnosed with minor depression (MinD). We recorded error-related negativity (ERN) as the participants performed a modified flanker task in 3 conditions: Duchenne smile, standard smile, and no smile. Behavioral data results showed that, in both the Duchenne smile and standard smile conditions, error rates were significantly lower than in the no-smile condition. The ERP analysis results indicated that, compared to the no-smile condition, both Duchenne and standard smiling facial expressions decreased ERN amplitude, and ERN amplitudes were smallest for those in the Duchenne smile condition. Our findings suggested that even brief smile manipulation may improve long-term negative mood states of people with MinD.

2009 ◽  
Vol 23 (4) ◽  
pp. 183-190 ◽  
Author(s):  
Björn Albrecht ◽  
Hartmut Heinrich ◽  
Daniel Brandeis ◽  
Henrik Uebel ◽  
Juliana Yordanova ◽  
...  

Response processing may comprise multiple systems working in parallel at different functional levels of performance monitoring. In time-frequency decompositions of response-locked event-related potentials from adults, a subprocess operating in the delta frequency band was interpreted as an index of cognitive error monitoring, distinguishable from a process with theta frequency probably related to motor control. However, it remains unclear whether such subprocesses can also be distinguished in children. In the current study, error processing was assessed in 22 normal boys aged 8 to 15 years using an Erikson Flanker task. Performance data revealed the expected indices of conflicting task demands, such as increased reaction times and error rates. A clear error-negativity was found in the response-locked event-related potentials after incompatible stimuli, and correct responses show a slow negative deflection immediately preceding the button-press, which is absent in errors. Time-frequency decompositions disclosed that a subprocess in the lower delta band preceding correct responses may reflect a more general action monitoring process sensitive to conflicting task demands that, moreover, may prevent one from making an error if it is active early enough. Processes in the delta and theta bands are modulated specifically by errors and may index motor-related monitoring in children. Moreover, these processes occurred considerably earlier for correct responses compared to errors, suggesting that their timing reflects some performance capacity. These considerations may help to clarify response processing in tasks with conflicting demands.


2013 ◽  
Vol 27 (2) ◽  
pp. 84-94 ◽  
Author(s):  
Mattie Tops ◽  
Sander L. Koole ◽  
Albertus A. Wijers

The present research investigates the association between concern over mistakes (CoM), a facet of the personality style of perfectionism, and the error positivity (Pe), a response-locked event-related brain potential that relates to error-awareness. Sixteen healthy right-handed female participants performed a flanker task, during which response-locked event-related potentials were measured. CoM was related to a larger Pe at frontal electrodes in a late (400–500 ms post-response) time interval. This frontal late Pe was not related to general trait anxiety. An earlier (150–350 ms) Pe with a more centroparietal maximum was positively associated with accuracy in the flanker task. CoM was not related to the amplitude of the error-related negativity. Exploratory analyses revealed correlations of CoM with reduced state arousal and late positive potential responses to emotional aspects of the feedback stimuli. The latter findings suggest the possibility that, instead of to an increased Pe, high CoM related to a decreased emotional arousal-sensitive stimulus-preceding negativity in anticipation of negative feedback. CoM may thus be associated with avoidant coping with the negative emotional impact of error feedback.


2005 ◽  
Vol 19 (4) ◽  
pp. 263-269 ◽  
Author(s):  
Ann-Christine Ehlis ◽  
Martin J. Herrmann ◽  
Achim Bernhard ◽  
Andreas J. Fallgatter

Abstract: In the present study, a modified version of the Eriksen Flanker Task has been used to study event-related potentials (ERPs) elicited by correct responses, response errors, and invalid negative response feedback following correct button presses (“PC-error trials”). Conventional error potentials (error related negativity [ERN/Ne]; error-positivity [Pe]) were observed after incorrect button presses but not following negative response feedback in PC-error trials. Furthermore, a late positive deflection occurred specifically after PC-errors (Late positivity [PL]), which might reflect a conscious processing of these unexpected events. The results imply some restrictions for the notion that the ERN/Ne reflects the activity of a general and “generic” neural error-detection system in the human brain. Furthermore, the existence of an “event-detection system” is indicated, which might be involved in the processing of events that violate learned expectations.


2013 ◽  
Vol 27 (2) ◽  
pp. 51-59 ◽  
Author(s):  
Anja Riesel ◽  
Anna Weinberg ◽  
Tim Moran ◽  
Greg Hajcak

Errors are aversive, motivationally-salient events which prime defensive action. This is reflected in a potentiated startle reflex after the commission of an error. The current study replicates and extends previous work examining the time course of error-potentiated startle as a function of startle lag (i.e., 300 ms or 800 ms following correct and error responses). In addition, the relationship between error-potentiated startle and error-related brain activity in both the temporal (error-related negativity, ERN/Ne) and spectral (error-related theta and delta power) domains was investigated. Event-related potentials (ERPs) were recorded from 32 healthy undergraduates while they performed an arrowhead version of a flanker task. Complex Morlet wavelets were applied to compute oscillatory power in the delta- and theta-band range. Consistent with our previous report, startle was larger following errors. Furthermore, this effect was evident at both early and late startle probe times. Increased delta and theta power after an error was associated with larger error-potentiated startle. An association between ERN amplitude and error-potentiated startle was only observed in a subgroup of individuals with relatively large ERN/Ne amplitude. Among these individuals, ERN/Ne magnitude was also related to multiple indices of task performance. This study further supports the notion that errors are aversive events that prime defensive motivation, and that error-potentiated startle is evident beyond the immediate commission of an error and can be predicted from error-related brain activity.


2005 ◽  
Vol 19 (3) ◽  
pp. 216-231 ◽  
Author(s):  
Albertus A. Wijers ◽  
Maarten A.S. Boksem

Abstract. We recorded event-related potentials in an illusory conjunction task, in which subjects were cued on each trial to search for a particular colored letter in a subsequently presented test array, consisting of three different letters in three different colors. In a proportion of trials the target letter was present and in other trials none of the relevant features were present. In still other trials one of the features (color or letter identity) were present or both features were present but not combined in the same display element. When relevant features were present this resulted in an early posterior selection negativity (SN) and a frontal selection positivity (FSP). When a target was presented, this resulted in a FSP that was enhanced after 250 ms as compared to when both relevant features were present but not combined in the same display element. This suggests that this effect reflects an extra process of attending to both features bound to the same object. There were no differences between the ERPs in feature error and conjunction error trials, contrary to the idea that these two types of errors are due to different (perceptual and attentional) mechanisms. The P300 in conjunction error trials was much reduced relative to the P300 in correct target detection trials. A similar, error-related negativity-like component was visible in the response-locked averages in correct target detection trials, in feature error trials, and in conjunction error trials. Dipole modeling of this component resulted in a source in a deep medial-frontal location. These results suggested that this type of task induces a high level of response conflict, in which decision-related processes may play a major role.


2009 ◽  
Vol 21 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Redmond G. O'Connell ◽  
Paul M. Dockree ◽  
Mark A. Bellgrove ◽  
Alessandra Turin ◽  
Seamus Ward ◽  
...  

Disentangling the component processes that contribute to human executive control is a key challenge for cognitive neuroscience. Here, we employ event-related potentials to provide electrophysiological evidence that action errors during a go/no-go task can result either from sustained attention failures or from failures of response inhibition, and that these two processes are temporally and physiologically dissociable, although the behavioral error—a nonintended response—is the same. Thirteen right-handed participants performed a version of a go/no-go task in which stimuli were presented in a fixed and predictable order, thus encouraging attentional drift, and a second version in which an identical set of stimuli was presented in a random order, thus placing greater emphasis on response inhibition. Electrocortical markers associated with goal maintenance (late positivity, alpha synchronization) distinguished correct and incorrect performance in the fixed condition, whereas errors in the random condition were linked to a diminished N2–P3 inhibitory complex. In addition, the amplitude of the error-related negativity did not differ between correct and incorrect responses in the fixed condition, consistent with the view that errors in this condition do not arise from a failure to resolve response competition. Our data provide an electrophysiological dissociation of sustained attention and response inhibition.


2020 ◽  
Author(s):  
Emily S. Kappenman ◽  
Jaclyn Farrens ◽  
Wendy Zhang ◽  
Andrew X Stewart ◽  
Steven J Luck

Event-related potentials (ERPs) are noninvasive measures of human brain activity that index a range of sensory, cognitive, affective, and motor processes. Despite their broad application across basic and clinical research, there is little standardization of ERP paradigms and analysis protocols across studies. To address this, we created ERP CORE (Compendium of Open Resources and Experiments), a set of optimized paradigms, experiment control scripts, data processing pipelines, and sample data (N = 40 neurotypical young adults) for seven widely used ERP components: N170, mismatch negativity (MMN), N2pc, N400, P3, lateralized readiness potential (LRP), and error-related negativity (ERN). This resource makes it possible for researchers to 1) employ standardized ERP paradigms in their research, 2) apply carefully designed analysis pipelines and use a priori selected parameters for data processing, 3) rigorously assess the quality of their data, and 4) test new analytic techniques with standardized data from a wide range of paradigms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259653
Author(s):  
Hiroki Nakata ◽  
Miho Takezawa ◽  
Keita Kamijo ◽  
Manabu Shibasaki

We investigated modality differences in the N2 and P3 components of event-related potentials (ERPs) between somatosensory and auditory Go/No-go paradigms in eighteen healthy prepubescent children (mean age: 125.9±4.2 months). We also evaluated the relationship between behavioral responses (reaction time, reaction time variability, and omission and commission error rates) and amplitudes and latencies of N2 and P3 during somatosensory and auditory Go/No-go paradigms. The peak latency of No-go-N2 was significantly shorter than that of Go-N2 during somatosensory paradigms, but not during auditory paradigms. The peak amplitude of P3 was significantly larger during somatosensory than auditory paradigms, and the peak latency of P3 was significantly shorter during somatosensory than auditory paradigms. Correlations between behavioral responses and the P3 component were not found during somatosensory paradigms. On the other hand, in auditory paradigms, correlations were detected between the reaction time and peak amplitude of No-go-P3, and between the reaction time variability and peak latency of No-go-P3. A correlation was noted between commission error and the peak latency of No-go-N2 during somatosensory paradigms. Compared with previous adult studies using both somatosensory and auditory Go/No-go paradigms, the relationships between behavioral responses and ERP components would be weak in prepubescent children. Our data provide findings to advance understanding of the neural development of motor execution and inhibition processing, that is dependent on or independent of the stimulus modality.


Sign in / Sign up

Export Citation Format

Share Document