scholarly journals In-Vitro Comparative Dissolution Study of Commercially Available Paracetamol Tablet

2020 ◽  
Vol 10 (1) ◽  
pp. 18-23
Author(s):  
Ayan Kumar Kar ◽  
Banhishikha Kar

Quality is the most important issue in the pharmaceutical field due to the presence of a drug which is considered as safe and therapeutically active agent. In-vitro evaluation ensures their quality, bioavailability as well as optimum therapeutic activity. Paracetamol (acetaminophen) which are the active metabolites of phenacetin is commonly used for the relief of headaches and pains, and is a major ingredient in numerous cold and flu remedies. Paracetamols are available in different brands in Indian market. The main objective of the present study was to conduct the comparative in-vitro dissolution studies of various brands collected from the local market to determine whether all the formulations used were equivalent or significantly different. The calibration curve was constructed covering the concentration range of 1 to 10 mcg/ml at 268 nm by UV spectrophotometer (UV 2203 Double beam spectrophotometer, Shimadzu).  Five different brands of Paracetamol of 500 mg conventional tablets from different manufacturers were selected in the study and dissolution testing in Phosphate buffer at pH 7.4 was conducted from each brands for 90 mins by using dissolution testing apparatus USP type-II. The dissolution rate was subjected to various mathematical models like zero order, first order, Higuchi and Hixson-Crowell equations to elucidate the kinetic behavior of drug release from the test samples. Different release kinetics model of all the selected brands was assuring the quality standard of manufacturing. Keywords: Paracetamol, Marketed Tablet, In-Vitro dissolution study, Release profile.

1970 ◽  
Vol 7 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Bishyajit Kumar Biswas ◽  
Md Safiqul Islam ◽  
Farida Begum ◽  
Abu Shara Shamsur Rouf

In the present study esomeprazole sustained release tablet matrix was prepared by utilizing different grades of hydroxypropyl methylcellulose (HPMC) polymers such as Methocel K15M & Methocel K100 LVCR by direct compression method. Different amount of Methocel K15M was used to develop matrix builder in the seven proposed formulations (F1-F7) for the study of release rate retardant effect at 20%, 25%, 30%, 35%, 40%, 45% and 50% of total weight of tablet matrix respectively. The dissolution study of Methocel K15M based tablet matrices of those proposed formulations were carried out in the simulated gastric medium (pH 1.3) for first two hours and then in the simulated intestinal medium (pH 6.8) for 8 hours using USP dissolution apparatus II. The formulation F-5 (40%) and F-6 (45%) met the optimum release rate of esomeprazole for 10h period of in vitro dissolution study. The release kinetics of formulation F-5 and F-6 very closely followed Higuchi kinetic order than first order and zero order kinetics. Similarly Methocel K100 LVCR was used to develop matrix builder in another seven proposed formulations (F8-F14). It was found that formulations F-11 (35%), F-12 (40%) and F-13 (45%) met the desired release rate of esomeprazole for 10h period. The release kinetics of formulation F-11, F-12 and F-13 followed Higuchi kinetic order. Between these two polymers, Methocel K100 LVCR showed better release retardant effect than Methocel K15M. Key words: Esomeprazole, Direct compression, Controlled release, Methocel K15M and Methocel K100 LVCRDOI = 10.3329/dujps.v7i1.1216 Dhaka Univ. J. Pharm. Sci. 7(1): 39-45, 2008 (June)  


Author(s):  
SALMA AULIA ◽  
LINA WINARTI ◽  
YUDI WICAKSONO

Objective: This study aimed to find the best SNEDDS meloxicam formula and analyze the release kinetics of meloxicam SNEDDS and non-SNEDDS using DDSolver.  Methods: Meloxicam SNEDDS was prepared using sunflower seed oil, Cremophor RH 40 as a surfactant, and polyethylene glycol (PEG) 400 as a co-surfactant.  Results: The best formula obtained subjected to the in vitro dissolution study was analyzed using DDSolver. The study shows one selected formula consists of 10% sunflower seed oil, 70% cremophor RH 40, and 20% PEG 400 with a 20.5 nm±12 nm droplet size. The dissolution study showed that SNEDDS could significantly increase the meloxicam release compared to the non-SNEDDS formulation. The kinetics of meloxicam release from SNEDDS formulations follow the Weibull release model (β = 1.00).  Conclusion: This study concludes that SNEDDS best prepared in sunflower seeds oil: Chremophor RH 40: PEG 400 ratio of 1: 7: 2 and has the potency to increase the solubility and dissolution of meloxicam.


Author(s):  
Umamaheswara G. ◽  
Anudeep D.

Fluvastatin sodium is a novel compound used as cholesterol lowering agent which acts through the inhibition of 3- hydroxyl-3- methyl glutaryl- coenzyme A (HMG-Co A) reductase. It has short biological half life (1-3h) in humans required a dosing frequency of 20 to 40mg twice a day. Due to its short variable biological half life it has been developed to a sustained gastroretentive system with a natural and synthetic polymer and to study how far the natural mucilage improves the sustained activity. Floating tablets were prepared by direct compression method using in combination of natural mucilage and synthetic polymer. Prior to the preparation of tablets the physical mixtures were subjected to FT IR studies and pre compression parameters. After preparation of tablets they were subjected to various tests like swollen index, drug content, In vitro dissolution and release kinetics with pcp disso software etc. The tablets prepared by direct compression shown good in thickness, hardness and uniformity in drug content, the prepared tablets floated more than 12h except FS1 and FS2 shows 9 and 11h. Swollen index studies shows with increase in concentration of polymer the swelling increases the diffusion path length by which the drug molecule may have to travel and cause lag time. In vitro results shows that on increasing the amount of hibiscus polymer the sustain activity is increased because of its integrity and forms a thick swollen mass and reduces the erosion property of the HypromelloseK100M, kinetic studies shows that FS 1, FS2, FS3 followed the Korsmeyer peppas model and the rest FS 4, FS 5, FS6 follows the zero order respectively. Based on n value indicating that the drug release followed super case II transport mechanism due to the erosion of the polymer.


Author(s):  
Surender Verma ◽  
S. Singh ◽  
D. Mishra ◽  
Atul Gupta ◽  
Rakesh Sharma

The objective of present study was to develop colon targeted drug delivery using bacterially triggered approach through oral route. Valdecoxib (COX-2 inhibitor) was chosen as a model drug in order to target it to colon which may prove useful in inflammatory bowel disease and related disorders. Matrix tablets of Valdecoxib were prepared by wet granulation technique utilizing different ratio of Guar gum and Sodium starch glycholate. The prepared matrix tablets were evaluated for uniformity of weight, uniformity of content, hardness and in vitro dissolution study in simulated gastric and intestinal fluid (Phosphate Buffer pH-1.2, pH-6.8 and pH-7.4), followed by Dissolution study in bio-relevant dissolution media Phosphate Buffer (pH-6.8) containing rat caecal content. The results revealed that the formulated batch had released lesser quantity of drug at pH 1.2 and pH 7.4 in 2 hors whereas in biorelevent dissolution media containing rat caecal content it released significantly higher amount of drug which was also significantly higher than the dissolution media of same pH without caecal content (microflora) and it was concluded that guar gum can be used as a potential carrier for targeting drugs to colon.


Author(s):  
Muhammad Faris Adrianto ◽  
Febri Annuryanti ◽  
Clive G. Wilson ◽  
Ravi Sheshala ◽  
Raghu Raj Singh Thakur

AbstractThe delivery of drugs to the posterior segment of the eye remains a tremendously difficult task. Prolonged treatment in conventional intravitreal therapy requires injections that are administered frequently due to the rapid clearance of the drug molecules. As an alternative, intraocular implants can offer drug release for long-term therapy. However, one of the several challenges in developing intraocular implants is selecting an appropriate in vitro dissolution testing model. In order to determine the efficacy of ocular implants in drug release, multiple in vitro test models were emerging. While these in vitro models may be used to analyse drug release profiles, the findings may not predict in vivo retinal drug exposure as this is influenced by metabolic and physiological factors. This review considers various types of in vitro test methods used to test drug release of ocular implants. Importantly, it discusses the challenges and factors that must be considered in the development and testing of the implants in an in vitro setup. Graphical abstract


Author(s):  
Mahima Singh ◽  
Sriramakamal Jonnalagadda

AbstractThis study evaluates the suitability of 3D printed biodegradable mats to load and deliver the topical antibiotic, neomycin, for up to 3 weeks in vitro. A 3D printer equipped with a hot melt extruder was used to print bandage-like wound coverings with porous sizes appropriate for cellular attachment and viability. The semicrystalline polyester, poly-l-lactic acid (PLLA) was used as the base polymer, coated (post-printing) with polyethylene glycols (PEGs) of MWs 400 Da, 6 kDa, or 20 kDa to enable manipulation of physicochemical and biological properties to suit intended applications. The mats were further loaded with a topical antibiotic (neomycin sulfate), and cumulative drug-release monitored for 3 weeks in vitro. Microscopic imaging as well as Scanning Electron Microscopy (SEM) studies showed pore dimensions of 100 × 400 µm. These pore dimensions were achieved without compromising mechanical strength; because of the “tough” individual fibers constituting the mat (Young’s Moduli of 50 ± 20 MPa and Elastic Elongation of 10 ± 5%). The in vitro dissolution study showed first-order release kinetics for neomycin during the first 20 h, followed by diffusion-controlled (Fickian) release for the remaining duration of the study. The release of neomycin suggested that the ability to load neomycin on to PLLA mats increases threefold, as the MW of the applied PEG coating is lowered from 20 kDa to 400 Da. Overall, this study demonstrates a successful approach to using a 3D printer to prepare porous degradable mats for antibiotic delivery with potential applications to dermal regeneration and tissue engineering.


2003 ◽  
Vol 25 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Rolf Rolli

Dissolution testing of drug formulations was introduced in the 1960s and accepted by health regulatory authorities in the 1970s. Since then, the importance of dissolution has grown rapidly as have the number of tests and demands in quality-control laboratories. Recent research works lead to the development of in-vitro dissolution tests as replacements for human and animal bioequivalence studies. For many years, a lot of time and effort has been invested in automation of dissolution tests. There have been a number of in-house solutions from pharmaceutical companies and many have created task forces or even departments to develop automation. Robotic solutions with sequential operation were introduced as well as the simultaneous operation concept developed by SOTAX. Today, pharmaceutical companies focus their resources mainly on the core business and in-house engineering solutions that are very difficult to justify. Therefore, it is important to know the basic considerations in order to plan an automation concept and implement it together with a vendor.


2012 ◽  
Vol 2 ◽  
pp. 1-8 ◽  
Author(s):  
Mubarak Nasser Al Ameri ◽  
Nanda Nayuni ◽  
K.G. Anil Kumar ◽  
David Perrett ◽  
Arthur Tucker ◽  
...  

1970 ◽  
Vol 7 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Golam Kibria ◽  
Muhammad Rashedul Islam ◽  
Reza-ul Jalil

The aim of the present study was to investigate the effect of Ammonio Methacrylate Copolymer Dispersion Type A (Eudragit RL 30 D) and Ammonio Methacrylate Copolymer Dispersion Type B (Eudragit RS 30 D) combination in different weight ratios on the release kinetics of Ambroxol Hydrochloride from coated pellets. Microcrystalline cellulose, lactose, maize starch, hydroxypropyl methylcellulose and the drug was incorporated in the nuclei prepared by Extrusion-Spheronization technique which was coated with Eudragit RL 30D and Eudragit RS 30D in 1:1,1:1.5,1:2,1:2.5 and 1:3 ratios. The in vitro dissolution studies were carried out in 0.1N HCl for 1 hour followed by phosphate buffer (pH 6.8) for 11 h with USP dissolution apparatus Type-II. Drug release decreased with increasing amount of Eudragit RS 30 D in all cases. The drug release followed first order and Higuchi release kinetics. The Korsmeyer plot revealed n=0.50-0.61 or non-Fickian transport mechanism for drug release. From one way ANOVA it was found that the ratio of binary polymer mixer had significant (p < 0.05) effect on drug release. Key words: Aqueous coating, Eudragit, release kinetics, pellet, extrusion-spheronization  DOI = 10.3329/dujps.v7i1.1222 Dhaka Univ. J. Pharm. Sci. 7(1): 75-81, 2008 (June)


Sign in / Sign up

Export Citation Format

Share Document