scholarly journals Formulations of sustained release matrix tablets of Furosemide using natural and synthetic polymers

2021 ◽  
Vol 11 (5) ◽  
pp. 105-109
Author(s):  
Shivani Soni ◽  
Vivek Jain ◽  
Sunil Kumar Jain ◽  
Pushpendra Kumar Khangar

The primary benefit of a sustained release dosage form compared to a conventional dosage form, is the consistent drug plasma concentration and consequently uniform therapeutic effect. Matrix system are preferential because of their ease, patient compliance etc, than  traditional drug delivery which have several drawbacks like reiterated administration, variation in blood concentration level etc. The aim of the present research study was to develop and evaluate sustained release matrix tablets of furosemide using direct compression method using  natural  gummy  and  waxy  materials (Xanthan  gum, bees  wax)  and synthetic  polymers  (HPMC K4M). The matrix tablet formulations were prepared by using different drug: polymer ratios (1:1, 1:2 and 1:3). All formulations were assessed using micromeritics studies of powder blend and diverse physicochemical tests. All the physicochemical characters of the formulated tablets were within acceptable limits. The release pattern of the drug was viewed over a period of 12 hours and determined the amount of drug by the UV-Visible spectroscopic method. Dissolution data demonstrated that the formulated tablets with Xanthan gum and hydroxyl propyl methylcellulose (HPMC) provided sustained release of the drug up to 12 hrs. Therefore inexpensively it may be appropriate for the pharmaceutical industries to employ this kind of simple technologies for the expansion of advanced formulations. Hence, we conclude that the purpose of this study was to formulate a sustained release matrix tablet of furosemide using diverse polymers and their dissimilar proportions have been attained. Keywords: Furosemide, Direct compression, Natural, Synthetic polymers, Sustained release tablets.

2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


Author(s):  
Poreddy Srikanth Reddy ◽  
Penjuri Subhash Chandra Bose ◽  
Vuppula Sruthi ◽  
Damineni Saritha

The aim of the present work was to prepare floating tablets of galantamine HBr using sodium alginate and xanthan gum as matrix forming carriers. Galantamine HBr is used for the treatment of mild to moderate Alzheimer's disease and various other memory impairments, in particular those of vascular origin. The matrix tablet formulations were prepared by varying the concentrations of sodium alginate and xanthan gum. The tablets were prepared by direct compression technique using PVP K-30 as a binder and sodium bicarbonate for development of CO2. The prepared matrix tablets were evaluated for properties such as hardness, thickness, friability, weight variation, floating lag time, compatibility using DSC and FTIR. In vitro dissolution was carried out for 12 hrs in 0.1N HCl at 37±0.5 ºC using USP paddle type dissolution apparatus. It was noted that, all the prepared formulations had desired floating lag time and constantly floated on dissolution medium by maintaining the matrix integrity. The drug release from prepared tablets was found to vary with varying concentration of the polymers, sodium alginate and xanthan gum. From the study it was concluded that floating drug delivery system for galantamine HBr can be prepared by using sodium alginate and xanthan gum as a carrier.


1970 ◽  
Vol 2 (2) ◽  
pp. 76-80
Author(s):  
Tajnin Ahmed ◽  
Muhammad Shahidul Islam ◽  
Tasnuva Haque ◽  
Mohammad Abusyed

In the present study sustained release diclofenac sodium matrix tablets were prepared using Kollidon SR polymer. Hydroxypropyl methylcellulose (HPMC 15 cps) and poly ethylene glycol (PEG-600) polymers respectively were used in formulating tablets prepared by direct compression and wet granulation methods. The polymers were used to explore the release pattern of the drug into the dissolution media. The tablets were also prepared in various shapes (caplet oval, round oval and flat oval). A comparatively higher release rate of drug was obtained from the polymer HPMC 15 cps at 10% concentration for directly compressed matrix tablet than those containing 20% of HPMC after a definite period of time. In wet granulation process, 10% PEG-600 containing tablets showed a better release than those containing 20% PEG. The drug release was also found to be sustained in case of wet granulation method than that of the direct compression method. Again the caplet shaped tablets in case of direct compression method showed better release rate of drug than those of the round oval and flat oval shaped tablets. Thus the result of this study shows that the proper selection of the percentage of polymer and the suitable shape of tablet and proper manufacturing method can provide a greater opportunity in designing sustained release dosage forms. Key words: Matrix tablet; release pattern; direct compression; wet granulation; PEG 600; Kollidon SR.DOI: 10.3329/sjps.v2i2.5828Stamford Journal of Pharmaceutical Sciences Vol.2(2) 2009: 76-80


2021 ◽  
Vol 10 (5) ◽  
pp. 131-136
Author(s):  
Asim pasha ◽  
C N Somashekhar

The aim of the present work was to develop sustained release Lornoxicam matrix tablets with polymers like HPMC K15M, Ethyl cellulose, and Crospovidone as carriers in varying quantities. Direct compression was used to make matrix tablets. Various assessment parameters, such as hardness, friability, thickness, percent drug content, weight variation, and so on, were applied to the prepared formulations. In vitro dissolution studies were carried out for 24 hrs. The tablets were subjected to in-vitro drug release in (pH 1.2) for first 2 hrs. Then followed by (pH 6.8) phosphate buffer for next 22 hrs. And the results showed that among the six formulations FL3 showed good dissolution profile to control the drug release respectively. The drug and polymer compatibility were tested using FT-IR spectroscopy, which revealed that the drug was compatible with all polymers. It is also required to design an appropriate prolonged release formulation for Lornoxicam in order to maintain the drug's release. Hence by using the compatible polymers sustained release tablets were formulated and subjected for various types of evaluation parameters like friability, hardness, drug content and dissolution behaviour. Finally, the findings reveal that the prepared sustained release matrix tablets of lornoxicam have improved efficacy and patient compliance.


Author(s):  
Mona Semalty ◽  
T Bisht ◽  
A Semalty

The aim of the present study was to develop sustained release, multilayered-matrix tablet of aceclofenac using natural polymers-guar gum (GG) and xanthan gum (XG) as carrier for core matrix and hydroxyl propylmethyl cellulose (HPMC K-15M), sodium carboxymethylcellulose (NaCMC) and ethyl cellulose (EC) and polyvinylpyrrolidone (PVP-K30) for preparing bottom and top layers. The formulated tablets were evaluated for uniformity of weight, drug content, friability, hardness, thickness, swelling index and in vitro drug release. The physicochemical properties of tablets were found within the limits. The physiochemical investigation showed that aceclofenac matrix tablet prepared with xanthan gum showed better dissolution profile as compared to that of guar gum. Matrix tablets of xanthan gum with 6% W/V xanthan gum (MTX1) showed the highest percent drug release (88.98%), while matrix tablets of guar gum with 6% W/V guar gum (MTG1) showed the highest percent drug release (73.89%) at the end of 8 hours in pH 6.8 phosphate buffer. Among the matrix tablet of xanthan gum MTX4 (with 24% W/V of xanthan) showed the lowest percent drug release (49.6%) and while among the guar gum tablets MTG4  (with 24% W/V of guar gum) showed the lowest percent drug release (48.65%) at the end of 8 hours. It was concluded that increasing the concentration of gum from 6% W/V to 24% W/V in the formulation decreased the amount of drug release from the tablet. The xanthan gum based matrix tablets of aceclofenac were found to be superior to that of guar gum matrix tablets for potential therapeutic uses. 


1970 ◽  
Vol 9 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Muhammad Rashedul Islam ◽  
Ishtiaq Ahmed ◽  
Mohiuddin Abdul Quadir ◽  
Md Habibur Rahman

The objective of the present study was to develop once-daily sustained-release matrix tablets of naproxen, one of the most potent non-steroidal anti-inflammatory agents used in the treatment of arthritic pain. The tablets were prepared by direct compression method using hydrophilic matrix materials like Methocel® K4M CR and Methocel® K15M CR. The tablets were subjected to measurement of thickness, diameter, weight variation, drug content, hardness and friability, the results of which were within compendial specification range. In vitro release studies were carried out by the USP basket method and were carried out at pH 7.4 buffer for ten hours. The results of dissolution studies indicated that higher polymer content in the matrix (40%) decreased the release rate of the drug as shown in formulation NMK4MF6 and NMK15MF6 (where lactose content is zero). The most successful formulations of the study, exhibited satisfactory drug release which was very close to the theoretical release profile. All the formulations exhibited diffusion-dominated drug release. Key words: Naproxen; Methocel® K4M CR; Methocel® K15M CR; Sustained release; Matrix tablets DOI: 10.3329/dujps.v9i1.7429 Dhaka Univ. J. Pharm. Sci. 9(1): 47-52 2010 (June)


2019 ◽  
Vol 9 (1) ◽  
pp. 183-189 ◽  
Author(s):  
Sonal Sahu ◽  
Rohit Dangi ◽  
Rohit Patidar ◽  
, Rukhsaar ◽  
Jagdish Rathi ◽  
...  

Oral route is one of the most popular routes of drug delivery due to its ease of administration, patient compliance, least sterility constraints and flexible design of dosage form. The aim of present investigation was to develop matrix tablets of atenolol using different polymers. Atenolol matrix tablets were prepared by direct compression and wet granulation method using different polymers. All the formulations were evaluated for weight variation, thickness, hardness, friability and dissolution. Tablets of atenolol were prepared utilizing natural polymer chitosan. The formulation F-2 contained chitosan which might have sustained the release since it is also known for its polymeric sustaining effect. The formulation F-2 gave 89.57±0.24% of the drug release in 12 hrs of study. Keywords: Atenolol, Sustained release Matrix tablets, Direct compression, Wet granulation method.


Author(s):  
S. JAYA ◽  
DIVYA S.

Objective: The purpose of present study was to formulate oral sustained release matrix tablet of metoclopramide hydrochloride and to evaluate the effect of varying concentrations of hydrophobic and hydrophilic polymers on drug release. Methods: Drug–excipients compatibility studies were carried out by using Fourier transform infrared spectroscopy (FTIR). The matrix tablets were prepared by direct compression technique using Xanthan gum and ethyl cellulose alone and in combination as release retardant. Dicalcium phosphate was used as diluent. The prepared matrix tablets were evaluated for their physicochemical parameters such as weight variation, hardness, friability, content uniformity and in vitro drug release studies were performed using USP-type II (paddle) dissolution apparatus. Results: Pre and post compression parameters were evaluated and all the parameters were found within the limit. The matrix tablets prepared with xanthan gum and combination of xanthan gum and ethyl cellulose were retarded the drug release upto 12 h. Ethyl cellulose alone could not control the drug release for 12 h. The Formulation with drug to xanthan gum (1:1.5), released 97.62 % of drug in 12 h. The kinetic treatment showed that the release of drug follows zero order kinetics (R 2=0.985). Korsmeyer and Peppas equation values of n were found to be in the range of 0.40-0.56, indicating that the drug release mechanism was diffusion. Conclusion: Matrix tablet is the simple, efficient and economic method to sustain the release of metoclopramide to prevent extrapyramidal side effects.


2021 ◽  
Vol 18 ◽  
Author(s):  
Mohsina Shaikh ◽  
Neha Desai ◽  
Munira Momin ◽  
Lokesh Kumar Bhatt

Objective: The objective of this study was to develop and optimize a microflora-triggered colon targeted sustained-release dosage form using gum ghatti (GG) and hydroxypropyl methylcellulose (HPMC K100). Methods: GG and HPMC K100 were used to prepare microflora triggered colon targeted sustained-release dosage form. For evaluation, two different tablets comprising metoprolol succinate and mesalamine as an active ingredient were used with the objective of developing a platform technology for various categories of drugs. The tablets were coated with Eudragit® L100 and Eudragit® S100 to provide enteric coating and evaluated for hardness, thickness, friability, weight variation, disintegration, and drug content. In vitro release studies for the prepared tablets were carried out mimicking the physiological transit time. Further, the effects of microflora were evaluated using rat cecal content. Results: The in vitro dissolution profile of coated matrix tablets showed that 86.03±0.43% of metoprolol succinate and 80.26±0.67% of mesalamine were released at the end of 12 h. The ex vivo dissolution profile of coated matrix tablets showed that 96.50±0.27% of metoprolol succinate and 92.58±0.39% of mesalamine were released at the end of 12 h in the presence of rat ceacal content. The developed formulation was stable when subjected to the standard ICH stability study conditions. Conclusion: The result of this study showed that gum ghatti together with hydroxypropyl methylcellulose could be successfully used for the preparation of microflora triggered colon targeted matrix tablets.


2020 ◽  
Vol 10 (3) ◽  
pp. 76-82
Author(s):  
Lakshmi Usha Ayalasomayajula ◽  
E. Radha Rani ◽  
A.V.S. Ksheera Bhavani ◽  
A. Vyasa Murty

Vomiting or emesis is the abnormal emptying of stomach and upper part of intestine through esophagus and mouth. It occurs due to stimulation of the emetic (vomiting) centre situated in the medulla oblongata. Domperidone, a D2 receptor antagonist has antiemetic and prokinetic action is used as a model drug in the present work to prepare Sustained release matrix tablets using various synthetic polymers like Eudragit and HPMC K15 M. The tablets are designed to have a pH dependent release profile in order to prevent initial drug release in the stomach to reduce the possible gastro-irritant and ulcerogenic effects of the drug. Different polymer and diluent concentrations and various compression techniques like wet granulation technique and direct compression techniques were used in order to release the contents of the tablets in a sustained manner over a certain period of time. Domperidone is BCS Class II drug and its solubility was enhanced by preparing solid dispersions using solvent evaporation technique. In the present work solid dispersions containing drug and polymer mixture in the ratio 1:1 was further formulated into tablets by incorporating various synthetic polymers in three different concentrations. The tablets were prepared using different granulating techniques. Formulation (F3) containing drug and  polymers in the ratio 1:1 prepared by wet granulation technique could sustain the drug release over a period of 12h and hence considering all the post compression parameters it was optimized as the better formulation. FTIR, DSC, X-Ray Diffraction, SEM studies were performed for optimized solid dispersion mixture and also the optimized formulation. Keywords: Solubility enhancement, Solid dispersions, Solvent Evaporation, Wet granulation, Direct Compression.


Sign in / Sign up

Export Citation Format

Share Document