scholarly journals Soil test based targeted yield equations for Ratoon sugarcane in alluvial soils

2020 ◽  
Vol 8 (5) ◽  
pp. 2556-2560
Author(s):  
B Asha Jyothi ◽  
T Srijaya ◽  
DV Ramana Reddy ◽  
A Madhavi ◽  
P Surendra Babu ◽  
...  
2017 ◽  
Vol 9 (2) ◽  
pp. 799-804
Author(s):  
N. B. Ghube ◽  
A. D. Kadlag ◽  
B. M. Kamble

Studies on Soil Test Crop Response based Integrated Plant Nutrition System (STCR - IPNS) were conducted adopting the Inductive cum Targeted yield model onInceptisols (VerticHaplustepts) in Rahuri, District Ahemadnagar, Maharashtra, India in order to develop fertilizer prescriptions through IPNS for the desired yield targets of preseasonal sugarcane ratoon. The field experiments were carried out with maize as gradient crop for plant cane and after harvest of plant cane, pre-seasonal sugarcane ratoon as test crop. Using the data on yield, initial soil test values on available nitrogen (N), phosphorus (P), potassium (K), doses of fertilizers and farmyard manure (FYM) applied and NPK uptake, the basic parameters viz., nutrient requirement, contribution from soil, fertilizers and FYM were computed. It was found that 1.56 kg N, 0.58 kg P and 1.04 kg K were required for producing one tonnemillable cane of preseasonal ratoon sugarcane. The per cent contributions of N, P and K from soil and FYM for preseasonal sugarcane ratoon were 37.65, 85.88 and 19.82 per cent and 11.83, 10.88 and 12.24 per cent, respectively. Making use of these basic parameters, fertilizer prescription equations were developed for pre-seasonal sugarcane ratoon (var. C0-94012) and an estimate of fertilizer doses formulated for a range of soil test values and desired yield targets under NPK alone and IPNS (NPK plus FYM).


Author(s):  
Andrey ilinsky ◽  
Alexander Nefedov ◽  
Konstantin Evsenkin

Global climatic changes, technogenic pollution by pollutants, violations of technologies of exploitation of reclaimed land lead to a decrease in fertility and soil degradation of agricultural land. Adverse weather conditions, resulting in a lack of adequate flood water, and economic difficulties in agriculture make it difficult to fill the deficit of organic matter and macronutrients in reclaimed alluvial soils. The monitoring of agrochemical properties of alluvial meadow medium-loamy soil of the stationary site (reclaimed lands of JSC «Moskovskoye» of Ryazan region), located in the floodplain of the Oka river, conducted by the Meshchersky branch of Vniigim, showed the presence and intensification of degradation changes in the soil. Thus, comparing the agrochemical indicators in the layer 0–20 cm, carried out in 1995, with the indicators of 2019, it should be noted a decrease in soil fertility. The decrease in soil quality was expressed in a decrease in the amount of mobile phosphorus by 37.6 %, mobile potassium by 53.3 %. Also, during this time there was a decrease in organic matter by 9.1 %, and an increase in soil acidity was 0.6 pH. As a result of such changes, soils lose ecological stability and become more vulnerable to adverse weather and negative anthropogenic impacts. In such a situation, advanced agricultural techniques should be actively used to obtain guaranteed, environmentally safe crop yields and restore the fertility of degraded reclaimed soils. In this regard, there is a need to develop innovative methods of fertility restoration of degraded alluvial soils in reclaimed lands using multi-component organic-mineral ameliorants. Meshchersky branch performs research work in addressing this issue.


1995 ◽  
Vol 25 (2) ◽  
pp. 208-214 ◽  
Author(s):  
J.S. Shumway ◽  
H.N. Chappell

The Diagnosis and Recommendation Integrated System (DRIS) has been used successfully in agricultural crops and holds promise for use in forest stands. This study used soil tests to develop DRIS norms and evaluate their effectiveness in coastal Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) forests. DRIS norms for nitrogen, phosphorus, potassium, and calcium were developed using soil test and site index data from 72 soil series that commonly support Douglas-fir in western Washington. The norms were tested using soil test and stand basal area growth response data from 20 thinned and 30 unthinned N fertilizer test sites in coastal Washington and Oregon. Response to urea fertilizer in thinned stands averaged 34% and 43% for 224 and 448 kg N•ha−1, respectively, when N was identified as the most limiting nutrient. When N was not the most limiting nutrient, N response averaged 8% and 10% for 224 and 448 kg N•ha−1, respectively. Results were similar in unthinned stands and thinned stands, although response to fertilizer appeared to be slightly less in unthinned stands when N was the most limiting nutrient. DRIS correctly classified 25 of the 33 sites (76%) where N fertilizer increased growth by more than 15%. More importantly, 13 of the 17 (76%) sites that responded by less than 15% were correctly identified by DRIS. The results clearly indicate that N fertilizer response is dependent on the interactions (balance) between soil nutrients at a given site. Future soil diagnostic work needs to focus on techniques, like DRIS, that provide an assessment of these interactions.


2021 ◽  
Vol 13 (8) ◽  
pp. 4401
Author(s):  
Jeffrey M. Novak ◽  
James R. Frederick ◽  
Don W. Watts ◽  
Thomas F. Ducey ◽  
Douglas L. Karlen

Corn (Zea mays L.) stover is used as a biofuel feedstock in the U.S. Selection of stover harvest rates for soils is problematic, however, because excessive stover removal may have consequences on plant available P and K concentrations. Our objective was to quantify stover harvest impacts on topsoil P and K contents in the southeastern U.S. Coastal Plain Ultisols. Five stover harvest rates (0, 25, 50, 75 and 100% by wt) were removed for five years from replicated plots. Grain and stover mass with P and K concentration data were used to calculate nutrient removal. Mehlich 1 (M1)-extractable P and K concentrations were used to monitor changes within the soils. Grain alone removed 13–15 kg ha−1 P and 15–18 kg ha−1 K each year, resulting in a cumulative removal of 70 and 85 kg ha−1 or 77 and 37% of the P and K fertilizer application, respectively. Harvesting stover increased nutrient removal such that when combined with grain removed, a cumulative total of 95% of the applied P and 126% of fertilizer K were taken away. This caused M1 P and K levels to decline significantly in the first year and even with annual fertilization to remain relatively static thereafter. For these Ultisols, we conclude that P and K fertilizer recommendations should be fine-tuned for P and K removed with grain and stover harvesting and that stover harvest of >50% by weight will significantly decrease soil test M1 P and K contents.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 329
Author(s):  
Dorota Kawalko ◽  
Paweł Jezierski ◽  
Cezary Kabala

The elimination of flooding and lowering of the groundwater table after large-scale river regulation allow deep penetration of soils by plant roots, soil fauna, and microorganisms, thus creating favorable conditions for advanced pedogenesis. Although the changes of the morphology and properties of agriculturally used drained alluvial soils in Central Europe have been well characterized, studies in riparian forests remain insufficient. An analysis of 21 profiles of forest soils located on the Holocene river terrace (a floodplain before river regulation and embankment) in SW Poland confirmed a noticeable pedogenic transformation of soil morphology and properties resulting from river regulation. Gleyic properties were in most profiles replaced with stagnic properties, testifying to a transition from dominant groundwater supply to precipitation-water supply. The development of a diagnostic mollic and cambic horizons, correlated with the shift in soil classification from Fluvisols to Phaeozems, and in the majority, to Cambisols, demonstrated a substantial change in habitat conditions. The transformation of alluvial soils may result in an inevitable modification of forest management in the river valley, including quantitative alteration in species composition of primarily riparian forests.


Sign in / Sign up

Export Citation Format

Share Document