scholarly journals Efficacy of different fungicides, plant extracts and bio-agents for the management of root rot of cluster bean incited by Macrophomina phaseolina

2021 ◽  
Vol 10 (3) ◽  
pp. 675-678
Author(s):  
Pankaj Kishanawat ◽  
Jitendra Singh ◽  
Mahabeer Singh
Author(s):  
Lalita Lakhran ◽  
R.R. Ahir

The present study was planned to evaluate the efficacy of various fungicides, plant extracts, biocontrol agents and oil cakes against Macrophomina phaseolina causing dry root rot of chickpea. Among the tested biocontrol agents against Macrophomina phaseolina, T. viride was found the most effective against the fungus followed by T. harzianum, Bacillus subtalis and P. fluorescens was the least effective in reducing root rot incidence. Among the fungicides carbendazim was found most effective and recorded minimum root rot incidence. Among plant extracts, garlic extract was found most effective in reducing root rot incidence followed by neem leaf extract. In the case of organic amendments, Neem cake was the most effective in reducing the root rot incidence while wool waste and goat manure was found least effective in controlling root rot incidence.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
B. Naseri ◽  
M. Gheitury ◽  
M. Veisi

SummaryUnderstanding pathogen-agrosystem interaction is particularly essential when applying a control method to minimize pathogen prevalence prior to plant infection. To meet this requirement, frequency of major root rot pathogens isolated from bean root and seed, and their soil populations were examined in farmers’ fields. Multivariate analyses evidenced more frequent isolations of Fusarium solani and Rhizoctonia solani from root and seed compared to Macrophomina phaseolina and Fusarium oxysporum. Two Fusarium species had denser soil populations than R. solani and M. phaseolina. More frequent isolations of pathogens were detected in root and seed collected from Abhar and Khodabandeh compared to Kheirabad region. Agronomic and soil variables corresponded less closely to root infections compared to soil infestation and seed infections. Bean market class, herbicide application, and planting depth were linked to root, seed and soil infestations. Such information provides a basis for increased confidence in choosing appropriate control strategies for a pathogen and region in sustainable agriculture.


Author(s):  
Wuraola Funmi Ogundipe ◽  
Ayotunde Ajoke Pitan ◽  
Oluwafemi Michael Adedire ◽  
Adekunle Opeyemi Farinu ◽  
Barry Oyeyemi Oyewole

Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 3081-3081
Author(s):  
Lin Cai ◽  
Yongzhi Zhang ◽  
Hancheng Wang ◽  
Chen Xu ◽  
Xianchao Sun

2017 ◽  
Vol 6 (9) ◽  
pp. 1676 ◽  
Author(s):  
Ramaraju Cherkupally ◽  
Srinivasa Reddy Kota ◽  
Hindumathi Amballa ◽  
Bhumi Narasimha Reddy

The antifungal activity of aqueous extracts of nine plants viz, Azadirachta indica, Parthenium hysterophorus, Momordica charantia, Allium sativum, Eucalyptus globules, Calotropis procera, Aloe vera, Beta vulgaris and Datura stramonium were assessed in vitro against Fusarium oxysporum f. sp. melongenae, Rhizoctonia solani and Macrophomina phaseolina, the soil borne phytopathogens. The assessment of fungitoxic effect was carried out by using three different concentrations i.e., 5, 10 and 20% against the test fungi, in terms of percentage of mycelial growth inhibition. The extract of A. sativum completely inhibited the mycelial growth of M. phaseolina at all the concentrations. The extracts of D. stramonium and E. globulus inhibited the mycelial growth of R. solani of 72%, and 70.7% respectively at 20% concentration, that of A. sativum, E. globulus and D. stramonium exhibited inhibition percentage of 63.3%, 61.8% and 61.1% respectively at 20% concentration on Fusarium oxysporum f. sp. melongenae. The application of plant extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.


Sign in / Sign up

Export Citation Format

Share Document