Evaluation of biocontrol agents for the management of root-rot of mung bean caused by Macrophomina phaseolina

2018 ◽  
Vol 72 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Shumaila Shahid ◽  
Mujeebur Rahman Khan
Our Nature ◽  
1970 ◽  
Vol 8 (1) ◽  
pp. 26-33 ◽  
Author(s):  
S. Dawar ◽  
M.J. Zaki ◽  
N. Ikram ◽  
M. Tariq

An experiment was carried out for the control of root rot fungi such as Fusarium spp., Macrophomina phaseolina (Tassi) Goid., and Rhizoctonia solani Kühn in Sunflower (Helianthus annus L.) and Mung bean (Vigna radiata (L.) R. Wilczek). Seeds were treated with gamma radiation (60Co) for 0, 2, 8 and 16 minutes intervals and soil was drenched with different antagonists such as Trichoderma harzianum Rifai, Pseudomonas aeruginosa (Schroeter) Migula and Rhizobium meliloti Dangeard. All the antagonists significantly increased germination percentage, shoot length, root length, shoot weight, root weight, leaf area and showed complete suppression of M. phaseolina and R. solani observed in mung bean and sunflower. In both crops, mostly growth parameters increased as the exposure of gamma rays increased whereas in some cases it decreased. P. aeruginosa and R. meliloti were observed to be satisfactory biocontrol agents followed by T. harzianum whereas all exposure time of irradiation of gamma rays (60Co) to seeds of mung bean and sunflower were found to be best.DOI: 10.3126/on.v8i1.4309


2012 ◽  
Vol 65 (3) ◽  
pp. 69-74 ◽  
Author(s):  
Naheed Ikram ◽  
Shahnaz Dawar

Root rot fungi cause severe losses of crop plants, so the present work was carried out to determine the effect of <em>Aerva javanica </em>parts powder on root infecting fungi of mung bean (<em>Vigna radiata </em>(L.) and cowpea (<em>Vigna unguiculata </em>(L.) Walp.). <em>A. javanica </em>parts (stem, leaves and flower) were used as soil amendments at 0.1, 1 and 5% to check the effectiveness on growth parameters. All the plant parts showed a significant reduction in root rot fungi like <em>Fusarium </em>spp., <em>Rhizoctonia solani </em>Kuhn, and <em>Macrophomina phaseolina </em>(Tassi) Goid. It was noted that germination percentage, fresh weight, leaf area and number of nodules were significantly higher and the inhibitory effect on root rot fungi increased when the soil was amended with <em>A. javanica </em>leaves at 1%. Thus, among all the treatments, <em>A. javanica </em>leaves at 1% were found to be the most effective against root rot fungi.


Author(s):  
Lalita Lakhran ◽  
R.R. Ahir

The present study was planned to evaluate the efficacy of various fungicides, plant extracts, biocontrol agents and oil cakes against Macrophomina phaseolina causing dry root rot of chickpea. Among the tested biocontrol agents against Macrophomina phaseolina, T. viride was found the most effective against the fungus followed by T. harzianum, Bacillus subtalis and P. fluorescens was the least effective in reducing root rot incidence. Among the fungicides carbendazim was found most effective and recorded minimum root rot incidence. Among plant extracts, garlic extract was found most effective in reducing root rot incidence followed by neem leaf extract. In the case of organic amendments, Neem cake was the most effective in reducing the root rot incidence while wool waste and goat manure was found least effective in controlling root rot incidence.


2011 ◽  
Vol 51 (3) ◽  
pp. 273-278 ◽  
Author(s):  
Vijayalakshmi Satya ◽  
Ayyathurai Vijayasamundeeswari ◽  
Vaikuntavasan Paranidharan ◽  
Rethinasamy Velazhahan

BurkholderiaSP. Strain TNAU-1 for Biological Control of Root Rot in Mung Bean (Vigna RadiataL.) Caused byMacrophomina PhaseolinaThe potential ofBurkholderiasp. strain TNAU-1 for the management of mung bean (Vigna radiataL.) root rot caused byMacrophomina phaseolinawas evaluated under greenhouse conditions.Burkholderiasp. strain TNAU-1 inhibited the mycelial growth ofM. phaseolina in vitroand produced an inhibition zone of 18.8 mm. Mung bean seeds when treated with the bacterial suspension, showed significant increase in root length, shoot length and seedling vigour. A talc-based powder formulation ofBurkholderiasp. strain TNAU-1 was developed and evaluated for its efficacy in the management of mung bean root rot under greenhouse conditions. Seed treatment or soil application of the powder formulation ofBurkholderiasp. strain TNAU-1 significantly reduced the incidence of root rot and increased the germination percentage and plant height. Seed treatment with the powder formulation ofBurkholderiasp. strain TNAU-1 alone was effective in controlling root rot disease; but the combined seed treatment and soil application ofBurkholderiasp. strain TNAU-1, increased the efficacy. Seed treatment and soil application withBurkholderiasp. reduced the root rot incidence from 52.6 per cent (with non-bacterized seeds) to 16.7 per cent. Control of root rot with the application ofBurkholderiasp. by seed treatment and soil application was not statistically different from that obtained with seed treatment with carbendazim. The endophytic movement ofBurkholderiasp. in the stem, roots and leaves of mung bean was confirmed through PCR usingBurkholderiasp. specific primers which resulted in the amplification of a 417 bp product.


Author(s):  
P. T. Sharavanan ◽  
V. K. Satya ◽  
M. Rajesh

Root rot of mung bean [Vigna radiata (L.) Wilczek var. radiata] is major disease and claims huge yield loss if they occur in the field. The pathogen is basically soil borne and survivability may vary depends on soil condition. The fungicide chemicals are available to manage the disease; however, the biocontrol agents are nowadays available for the disease management and the microbial activity of the biocontrol agents is influenced by existing soil condition including soil pH. Hence, a study was conducted to find out the halo tolerance capacity of the biocontrol agents against root rot disease in salt affected soils under in vitro, in vivo and field condition. The root rot pathogen Macrophomina phaseolina was isolated from infected root. Efficacy of biocontrol agents against growth of M. phaseolina was assessed in vitro. The results revealed that TNAU strain of Bacillus subtilis reduced the mycelial growth of the M. phaseolina significantly when media supplemented with NaCl at 5% (1.4 cm), 7.5% (1.5 cm), 10% (1.6cm) and 12.5% (1.6 cm) and without NaCl (1.2 cm) and similar trend of reduction also expressed by BCA1 strain of B. subtilis, Pseudomonas fluorescens and Trichoderma viride under in vitro. The performance of the biocontrol agents against the pathogen is slightly reduced when media supplemented with NaCl. The reduction of mycelia weight of M.phaeolina was more in media added with TNAU strain of B.subtilis and the performance of TNAU strain of B.subtilis on reduction of mycelial weight of M.phaseolina is reduced when the broth added with NaCl at 5% (3.15g), 7.5% (3.25g), 10% (3.32g) and 12.5%(3.65g) level and which is followed by P. fluorescens, BCA 1 strain of B. subtilis and Trichoderma viride. Under pot culture conditions, the effect of talc formulated biocontrol agents and challenge inoculation with pathogen was assessed against root rot incidence. It was found that the soil application of TNAU strain of B.subtilis performed better in reducing the root rot incidence at pH of 7.0 (2.37%), 7.5 (4.50%), 8.0 (5.53%) and 8.7 (6.57%) and followed by BCA 1 of B.subtilis in all pH level. Among the biocontrol agents, TNAU strain of B.subtilis applied as seed as well as soil application expressed more population in the rhizosphere in all pH level. The biocontrol agents applied as soil application had more populations of the agents in the soil when compared to seed treatment. The halo tolerance performance of the biocontrol agents was also assessed under field condition in pH of 7.5 and 8.7 during 2019-20 and 2020-21. It was found that the minimum root rot incidence and maximum yield was observed from soil application of TNAU strain of B subtilis at 2.5 kg/ha but the effect is on par with soil application of BCA1 strain of B.subtilis at 2.5 kg/ha.


Author(s):  
Mahabeer Singh ◽  
Jitendra Singh ◽  
Shivam Maurya ◽  
Sunil Kumar ◽  
A.K. Meena ◽  
...  

Macrophomina phaseolina (Tassi) Goid. is a soil- and seed-borne pathogen that causes charcoal rot and various rots and blights of more than 500 crop species. Dry root rot (DRR) also called as charcoal rot which causes yield loss ranged from 25-48 per cent. The pathogen is necrotroph and infects a wide range of crops. It is observed that mycelium of M. phaseolina in cotyledons, plumule and radicle, in the naturally infected seeds of mungbean and cowpea. The disease symptoms are clearly visible from the time of emergence and can be evaluated at various stages of development of the plant. The mechanical plugging of the xylem vessels by microsclerotia, toxin production, enzymatic action and mechanical pressure during penetration lead to disease development. Management of M. phaseolina aim to reduce the number of sclerotia in soil or to minimize the contact of the inoculum and the host. Soil solarization can be a cost-effective method for management of soil borne diseases. Disease suppression by biocontrol agents such as Trichoderma harzianum, T. viride and Bacillus subtilis are the sustained manifestation of interactions among the plant, the pathogen, the biocontrol agent, the microbial community on and around the plant and the physical environment and considerably inhibited growth of M. phaseolina. Essential oils and plant extracts contain a multitude of bioactive substances against fungi, bacteria and nematodes. It has been reported that neem oil, turmeric and garlic was effective against M. phaseolina in in vitro condition. Chemical control is an effective method when seed treatment and foliar spray of carbendazim, topsin M-70, captan, thiram, mancozeb, copper oxychloride against root rot and leaf blight (Macrophomina phaseolina) topsin M-70, captan, thiram, mancozeb, copper oxychloride against root rot (Macrophomina phaseolina). As non-chemical alternative methods can be time-consuming and less effective against soilborne plant pathogens. Chemical control is an effective method of controlling some soilborne diseases in agricultural crops. Varoius workers are reported compatibility of biocontrol agents with fungicides and found that Carbendazim and biocontrol agents Trichoderma viride, T. harizianum were found effective under in vitro and pot condition.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
B. Naseri ◽  
M. Gheitury ◽  
M. Veisi

SummaryUnderstanding pathogen-agrosystem interaction is particularly essential when applying a control method to minimize pathogen prevalence prior to plant infection. To meet this requirement, frequency of major root rot pathogens isolated from bean root and seed, and their soil populations were examined in farmers’ fields. Multivariate analyses evidenced more frequent isolations of Fusarium solani and Rhizoctonia solani from root and seed compared to Macrophomina phaseolina and Fusarium oxysporum. Two Fusarium species had denser soil populations than R. solani and M. phaseolina. More frequent isolations of pathogens were detected in root and seed collected from Abhar and Khodabandeh compared to Kheirabad region. Agronomic and soil variables corresponded less closely to root infections compared to soil infestation and seed infections. Bean market class, herbicide application, and planting depth were linked to root, seed and soil infestations. Such information provides a basis for increased confidence in choosing appropriate control strategies for a pathogen and region in sustainable agriculture.


2020 ◽  
pp. 1-8
Author(s):  
Beilei Wu ◽  
Beilei Wu ◽  
Mei Li ◽  
Xiaoli Chen ◽  
Xiliang Jiang ◽  
...  

Endophytes are increasingly investigated as biocontrol agents for agricultural production. The identification of new endophytes with high effectiveness against plant disease is very important. A total of 362 strains of endophytes, including fungi, bacteria, and actinomycete, were isolated from alfalfa (Medicago sativa L.) collected in Hebei, Inner Mongolia and Ningxia provinces of China. The three strains of endophytic bacteria (NA NX51R-5, NA NX90R-8, and NA NM1S-1) with strong biocontrol capability with >50% effectiveness were screened against the common alfalfa root rot pathogen Fusarium oxysporum F. sp. medicaginis in alfalfa seedling germination experiments on MS medium and pot experiments. Using phylogenetic analysis, the isolates of NA NM1S-1 and NA NX51R-5 were identified as Bacillus spp. by 16S rDNA, while NA NX90R-8 was found to be Pseudomonas sp.


Sign in / Sign up

Export Citation Format

Share Document