scholarly journals Antioxidative and anti-inflammatory effects of Cichorium intybus L. seed extract in ischemia/reperfusion injury model of rat spinal cord

2018 ◽  
Vol 4 (4) ◽  

Objectives: The antioxidant and anti-inflammatory effects of aqueous extract of chicory seed (CSE, Cichorium intybus L. seed) following spinal cord ischemia/reperfusion (SCI/R) injury in rat model were evaluated. Methods: In this study 36 male Wistar rats were randomly divided to six groups: control (Co), sham (Sh), CSE, SCI/R, CSE+SCI/R (7 days pretreatment with CSE group+inducing I/R injury), SCI/R +CSE (induced I/R injury group+3 days treatment with CSE). SCI/R injury was induced by creating a longitudinal incision on the midline of abdominal region and clamping the aorta just below renal artery for 30 minutes. After 3 days, SC was removed and used for evaluation of antioxidant enzymes (including Superoxide dismutase [SOD] and catalase [CAT]), oxidative stress markers (malondialdehyde [MDA]), inflammatory factors (IL1β, IL18 & TNFα) and histopathological changes. Before sacrificing the animals, the motional score were assessed. Results: Our results demonstrated that, in the SCI/R group, the mean levels of SOD, and CAT were significantly decreased (P<0.05), while the mean level of MDA was significantly increased (P<0.05) in comparison to Co and Sh groups. Also, the mean levels of SOD and CAT in the treatment group were higher than the SCI/R group (P<0.05), while, the mean MDA content in the treatment group was significantly less than the SCI/R group (P <0.05). In addition, comparison between SCI/R and treatment groups demonstrated a significant decrease in tissue damage in the treatment group. Conclusions: Our study demonstrated that, the neuroprotective effects of aqueous extract of Cichorium intybus L. seed on SCI/R injury in rat by anti-oxidative and anti-inflammatory activities. Additionally, comparing the treatment and pretreatment groups shows that the pretreatment usage of the extract is more effective than treatment group.

Inflammation ◽  
2014 ◽  
Vol 37 (3) ◽  
pp. 917-923 ◽  
Author(s):  
Ergün Karavelioğlu ◽  
Yücel Gönül ◽  
Serdar Kokulu ◽  
Ömer Hazman ◽  
Fatih Bozkurt ◽  
...  

2015 ◽  
Vol 36 (1) ◽  
pp. 373-383 ◽  
Author(s):  
Bo Fang ◽  
Xiao-Qian Li ◽  
Bo Bi ◽  
Wen-Fei Tan ◽  
Gang Liu ◽  
...  

Background/Aims: Dexmedetomidine has beneficial effects on ischemia reperfusion (I/R) injury to the spinal cord, but the underlying mechanisms are not fully understood. This study investigated the effects and possible mechanisms of dexmedetomidine on blood-spinal cord barrier (BSCB) disruption induced by spinal cord I/R injury. Methods: Rats were intrathecally pretreated with dexmedetomidine or PBS control 30 minutes before undergoing 14-minute occlusion of aortic arch. Hind-limb motor function was assessed using Tarlov criteria, and motor neurons in the ventral gray matter were counted by histological examination. The permeability of the BSCB was examined using Evans blue (EB) as a vascular tracer. The spinal cord edema was evaluated using the wet-dry method. The expression and localization of matrix metalloproteinase-9 (MMP-9), Angiopoietin-1 (Ang1) and Tie2 were assessed by western blot, real-time polymerase chain reaction, and immunofluorescence. Results: Intrathecal preconditioning with dexmedetomidine minimized the neuromotor dysfunction and histopathological deficits, and attenuated EB extravasation after spinal cord I/R injury. In addition, dexmedetomidine preconditioning suppressed I/R-induced increase in MMP-9. Finally, Dexmedetomidine preconditioning enhanced the Ang1-Tie2 system activity after spinal cord I/R injury. Conclusions: Dexmedetomidine preconditioning stabilized the BSCB integrity against spinal cord I/R injury by inhibition of MMP-9, and enhancing the Ang1-Tie2 system.


Sign in / Sign up

Export Citation Format

Share Document