scholarly journals Self-organized topological insulator due to cavity-mediated correlated tunneling

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 501
Author(s):  
Titas Chanda ◽  
Rebecca Kraus ◽  
Giovanna Morigi ◽  
Jakub Zakrzewski

Topological materials have potential applications for quantum technologies. Non-interacting topological materials, such as e.g., topological insulators and superconductors, are classified by means of fundamental symmetry classes. It is instead only partially understood how interactions affect topological properties. Here, we discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions. The system is composed by soft-core bosons that interact via global correlated hopping in a one-dimensional lattice. The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry, the corresponding phase resembles nontrivial states of the celebrated Su-Schriefer-Heeger model. Like the fermionic Peierls instability, the emerging quantum phase is a topological insulator and is found at half fillings. Originating from quantum interference, this topological phase is found in "exact" density-matrix renormalization group calculations and is entirely absent in the mean-field approach. We argue that these dynamics can be realized in existing experimental platforms, such as cavity quantum electrodynamics setups, where the topological features can be revealed in the light emitted by the resonator.

2019 ◽  
Vol 99 (4) ◽  
Author(s):  
Lukas Himbert ◽  
Cecilia Cormick ◽  
Rebecca Kraus ◽  
Shraddha Sharma ◽  
Giovanna Morigi

2021 ◽  
Author(s):  
Alex Naiman ◽  
Yoel Sebbag ◽  
Eliran Talker ◽  
Yefim Barash ◽  
Liron Stern ◽  
...  

Abstract The miniaturization of atomic quantum systems and their integration into silicon microchips paves the way for a wide variety of applications in quantum computing, metrology and magnetometry. A particular interest is found in the integration of quantum entities into the micro and nanoscale photonic resonators to implement chip scale cavity quantum electrodynamics. Here we demonstrate the interaction of a chip scale micro disc resonator with thermal rubidium atoms via the evanescent field of the mode. We observe high Rabi splitting of 4 GHz in the transmission spectrum of the coupled photonic-atomic system due to collective enhancement of the coupling rate by the ensemble of hot atoms and present a theoretical model to support the measured results. This result corresponds to atom-photon cooperativity of ~ 1. Such cooperativity is the onset for quantum interference, needed for high-end chip scale quantum technologies, such as such as quantum manipulation, quantum information storage and processing, and few photon switching.


ACS Nano ◽  
2020 ◽  
Vol 14 (10) ◽  
pp. 14118-14125
Author(s):  
Hong-Seok Kim ◽  
Tae-Ha Hwang ◽  
Nam-Hee Kim ◽  
Yasen Hou ◽  
Dong Yu ◽  
...  

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Sophie Charpentier ◽  
Luca Galletti ◽  
Gunta Kunakova ◽  
Riccardo Arpaia ◽  
Yuxin Song ◽  
...  

Abstract Topological superconductivity is central to a variety of novel phenomena involving the interplay between topologically ordered phases and broken-symmetry states. The key ingredient is an unconventional order parameter, with an orbital component containing a chiral p x  + ip y wave term. Here we present phase-sensitive measurements, based on the quantum interference in nanoscale Josephson junctions, realized by using Bi2Te3 topological insulator. We demonstrate that the induced superconductivity is unconventional and consistent with a sign-changing order parameter, such as a chiral p x  + ip y component. The magnetic field pattern of the junctions shows a dip at zero externally applied magnetic field, which is an incontrovertible signature of the simultaneous existence of 0 and π coupling within the junction, inherent to a non trivial order parameter phase. The nano-textured morphology of the Bi2Te3 flakes, and the dramatic role played by thermal strain are the surprising key factors for the display of an unconventional induced order parameter.


Sign in / Sign up

Export Citation Format

Share Document