scholarly journals Common irregularities and its effects on reinforced concrete building response

Author(s):  
Krishna Ghimire ◽  
Hemchandra Chaulagain

In most of the countries, the irregular building construction is popular for fulfilling both aesthetic and functional requirements. However, the evidence of past earthquakes in Nepal and the globe demonstrated the higher level of seismic vulnerability of the buildings due to irregularities. Considering this fact, the present study highlighted the common irregularities and its effect on reinforced concrete building response. The effect of structural irregularities was studied through numerical analysis. The geometrical, mass and stiffness irregularities were created by removing bays in different floor levels and removing the columns at different sections respectively. In this study, the numerical models were created in finite element program SAP2000. The structural performance was studied using both non-linear static pushover and dynamic time history analysis. The results indicate that the level of irregularities significantly influenced the behavior of structures.

2021 ◽  
Vol 1 (1) ◽  
pp. 70-87
Author(s):  
Krishna Ghimire ◽  
Hemchandra Chaulagain

Irregular building structure is frequently constructed across the globe for fulfilling aesthetic as well as functional requirements. The structures with irregularities are the common building type in earthquake-prone country like Nepal. However, a post-earthquake reconnaissance survey reports revealed the high seismic vulnerability of the building with structural irregularities. In this context, the present study explores the influence of structural irregularities on performance of reinforced concrete (RC) frame structure. To this end, the structural irregularities are created in in the building structures. The geometrical irregularities are created by removing the bays in different floor levels. Likewise, the effect due to mass irregularities are studied by considering the swimming pool and game house at different floor levels. Furthermore, the stiffness irregularities are formulated by removing the building columns at different sections. All these irregularities are studied analytically in finite element program with 3-D structural models. The numerical analysis is done with non-linear static pushover and time history analysis. The results are analyzed in terms of fundamental time period, storey shear, storey displacement, drift and overturning moment. The results indicate that the level of irregularities significantly influenced the behavior of structures.


1999 ◽  
Vol 7 (1) ◽  
pp. 1-18 ◽  
Author(s):  
A.M. Memari ◽  
A.R. Yazdani Motlagh ◽  
M. Akhtari ◽  
A. Scanlon ◽  
M. Ghafory Ashtiany

2021 ◽  
Vol 850 (1) ◽  
pp. 012012
Author(s):  
R. Prashanthi ◽  
S. Elavenil

Abstract The blast explosion causes catastrophic failure of structure both externally and internally. In this work the analytical investigation is carried out on the blast performance of the reinforced concrete building frame. Reinforced concrete building connection is vital in the Moment Resistant Frames (MRF) and they play a vital role under constant blast load. It is important to design the building for blast loading since they are subjected to large displacements. The non-linear dynamic behavior of the building by time history analysis method is performed by using SAP2000 finite element stimulation software. Blast load is idealized as the triangular pulse for single degree of freedom system and the effect of the blast load at a different standoff distances on the building element is examined. The analytical method could predict the overall flexural, non-linear shear behavior and ductile response of the building at different modes. The results of the stimulations for various failure conditions such as maximum displacement, maximum base shear and spectral acceleration as per IS 1893-2016 for non-linear dynamic responses are investigated in this study.


Sign in / Sign up

Export Citation Format

Share Document