In Silico Prediction, Computational Physico Chemical Analysis in Gymnemic Acids

Author(s):  
Indumathi Dhanapal ◽  
Sujatha Ramasamy ◽  
Sundaram Palanisamy Shanmuga

Gymnema sylvestre (Asclepiadaceae) also known as ‘gurmar’ or ‘sugar destroyer’ is a woody, climbing traditional medicinal herb which has many therapeutic applications in the Ayurvedic system of medicine. We present an overview of the most important databases with 2 gymnemic acid structural information about drugs and drug candidates, and of databases with relevant properties. Access to experimental data and numerical methods for selecting and utilizing these data is crucial for developing accurate predictive in silico models. Many interesting predictive methods for classifying the suitability of chemical compounds as potential drugs, as well as for predicting their physico-chemical and ADMET properties have been proposed in recent years. The gymnemic acids act as therapeutic agents and play vital roles in many therapeutic applications. Gymnemic acids are thought to be responsible for its anti-diabetic activity and are the major component of an extract shown to stimulate insulin release. It is also screened for bioavailability study, physicochemical study, drug likeness study, medicinal chemical analysis and target prediction. These methods are discussed, and some possible future directions in this rapidly developing field are also described. The commercial exploitation of this plant and its secondary metabolites are some of the major perspectives of this rare medicinal herb. The focus of the present study is to achieve the potential of therapeutic value of this herb its mechanism,and the action of their secondary metabolites.

2021 ◽  
Vol 9 (2) ◽  
pp. 25-28
Author(s):  
Abdul Gaffar Shareef ◽  
Chaitra H

Aim: To evaluate physicochemical and phytochemical Analysis of Ela & Pippali. Objectives: To Analyse the Physicochemical and Phytochemical properties of Ela and Pippali, as physicochemical and phytochemical aspects is an important parameter in detecting adulteration or improper handling of drugs. Materials and Method: Raw drugs were procured from local market in Hassan. The Drugs are identified, and Physicochemical and Phytochemical analysis was done at Dravya Guna department of Sri Dharmasthala Manjunateshwara College of Ayurveda and Hospital Hassan. Results and Discussion: Physico chemical analysis of Ela and Pippali was carried out and found similar to reported API standard limits. Qualitative tests of the Ela showed presence of Glycosides, Flavonoids, steroids, carbohydrates and Proteins. Qualitative tests of the Pippali showed presence of Alkaloids, Glycosides, Flavonoids, steroids, tannins, carbohydrates and Proteins. These secondary metabolites are the essential part of the drug which makes the plant useful for treating different ailments and having the potential of providing useful drugs for the management of various conditions. Conclusion: The present study will provide sufficient information about the identification, standardization, Therapeutic efficacy and quality control of Ela and Pippali.


2020 ◽  
Vol 53 (2) ◽  
Author(s):  
Khalil Ahmed Laghari ◽  
Abdul Jabbar Pirzada ◽  
Mahboob Ali Sial ◽  
Muhammad Athar Khan ◽  
Jamal Uddin Mangi

2019 ◽  
pp. 1-4
Author(s):  
Tikam Chand ◽  
Tikam Chand

Having role in gene regulation and silencing, miRNAs have been implicated in development and progression of a number of diseases, including cancer. Herein, I present potential miRNAs associated with BAP1 gene identified using in-silico tools such as TargetScan and Exiqon miRNA Target Prediction. I identified fifteen highly conserved miRNA (hsa-miR-423-5p, hsa-miR-3184-5p, hsa-miR-4319, hsa-miR125b-5p, hsa-miR-125a-5p, hsa-miR-6893-3p, hsa-miR-200b-3p, hsa-miR-200c-3p, hsa-miR-505-3p.1, hsa-miR-429, hsa-miR-370-3p, hsa-miR-125a-5p, hsa-miR-141-3p, hsa-miR-200a-3p, and hsa-miR-429) associated with BAP1 gene. We also predicted the differential regulation of these twelve miRNAs in different cancer types.


Author(s):  
Shikha Sharma ◽  
Shweta Sharma ◽  
Vaishali Pathak ◽  
Parwinder Kaur ◽  
Rajesh Kumar Singh

Aim: To investigate and validate the potential target proteins for drug repurposing of newly FDA approved antibacterial drug. Background: Drug repurposing is the process of assigning indications for drugs other than the one(s) that they were initially developed for. Discovery of entirely new indications from already approved drugs is highly lucrative as it minimizes the pipeline of the drug development process by reducing time and cost. In silico driven technologies made it possible to analyze molecules for different target proteins which are not yet explored. Objective: To analyze possible targets proteins for drug repurposing of lefamulin and their validation. Also, in silico prediction of novel scaffolds from lefamulin has been performed for assisting medicinal chemists in future drug design. Methods: A similarity-based prediction tool was employed for predicting target protein and further investigated using docking studies on PDB ID: 2V16. Besides, various in silico tools were employed for prediction of novel scaffolds from lefamulin using scaffold hopping technique followed by evaluation with various in silico parameters viz., ADME, synthetic accessibility and PAINS. Results: Based on the similarity and target prediction studies, renin is found as the most probable target protein for lefamulin. Further, validation studies using docking of lefamulin revealed the significant interactions of lefamulin with the binding pocket of the target protein. Also, three novel scaffolds were predicted using scaffold hopping technique and found to be in the limit to reduce the chances of drug failure in the physiological system during the last stage approval process. Conclusion: To encapsulate the future perspective, lefamulin may assist in the development of the renin inhibitors and, also three possible novel scaffolds with good pharmacokinetic profile can be developed into both as renin inhibitors and for bacterial infections.


Author(s):  
Subbiah Latha ◽  
Palanisamy Selvamani ◽  
Thangavelu Prabha

: Natural products have a unique place in the healthcare industry. The genus Commiphora emerged as a potential medicinal with huge benefits as evidenced through its use in various traditional and modern systems of medicine. Therefore, we aimed to prepare a concise review on the pharmacological activities and the indigenous uses of various plant species belonging to the genus Commiphora along with the structural information of various active botanical ingredients present in these plants based on the published literatures and scientific reports. To collect the various published literatures on Commiphora in various journals; to study and classify the available information on the pharmacological uses and chemical constituents; and to present the gathered information as a precise review to serve as a potential reference for future research. Pharmacological and phytochemical data on Commiphora plant species were collected from various journals, books, reference materials, websites including scientific databases, etc for compilation. This review article describes the various pharmacological properties of plants of Commiphora species viz., Anti-arthritic and anti-inflammatory, Anti-atherogenic, Antibacterial, Anti-coagulant, Anti-dicrocoeliasis, Anti-epileptic, Anti-fascioliasis, Anti-fungal, Anti-heterophyidiasis, Anti-hyper cholesterolemic, Anti-hyperlipidemic, Anti-hypothyroidism, Anti-obesity, Anti-osteoarthritic, Anti-osteoclastogenesis, Anti-oxidant, Anti-parasitic, Anti-pyretic, Anti-schistosomiasis, Anti-septic, Anti-thrombotic, Anti-ulcer, Cardioprotective, COX enzyme inhibitory, Cytotoxic /Anti-carcinogenic/Anti-cancer, DNA cleavage, Hypotensive, Inhibits lipid peroxidation, Inhibits NO and NO synthase production, Insecticidal, Local anesthetic, Molluscicidal, Smooth muscle relaxant, Tick repellent activities along with toxicity studies. Furthermore, the review also included various secondary metabolites isolated from various species of Commiphora genus along with their chemical structures serve as a ready resource for researchers. We conclude that the plant species belonging to the genus Commiphora possesses abundant pharmacological properties with a huge treasure of diverse secondary metabolites within themselves. This review indicates the necessity of further in-depth research, pre-clinical and clinical studies with Commiphora genus which may help to detect the unidentified potential of the Commiphora plant species.


2020 ◽  
Vol 17 (2) ◽  
pp. 125-132
Author(s):  
Marjanu Hikmah Elias ◽  
Noraziah Nordin ◽  
Nazefah Abdul Hamid

Background: Chronic Myeloid Leukaemia (CML) is associated with the BCRABL1 gene, which plays a central role in the pathogenesis of CML. Thus, it is crucial to suppress the expression of BCR-ABL1 in the treatment of CML. MicroRNA is known to be a gene expression regulator and is thus a good candidate for molecularly targeted therapy for CML. Objective: This study aims to identify the microRNAs from edible plants targeting the 3’ Untranslated Region (3’UTR) of BCR-ABL1. Methods: In this in silico analysis, the sequence of 3’UTR of BCR-ABL1 was obtained from Ensembl Genome Browser. PsRNATarget Analysis Server and MicroRNA Target Prediction (miRTar) Server were used to identify miRNAs that have binding conformity with 3’UTR of BCR-ABL1. The MiRBase database was used to validate the species of plants expressing the miRNAs. The RNAfold web server and RNA COMPOSER were used for secondary and tertiary structure prediction, respectively. Results: In silico analyses revealed that cpa-miR8154, csi-miR3952, gma-miR4414-5p, mdm-miR482c, osa-miR1858a and osa-miR1858b show binding conformity with strong molecular interaction towards 3’UTR region of BCR-ABL1. However, only cpa-miR- 8154, osa-miR-1858a and osa-miR-1858b showed good target site accessibility. Conclusion: It is predicted that these microRNAs post-transcriptionally inhibit the BCRABL1 gene and thus could be a potential molecular targeted therapy for CML. However, further studies involving in vitro, in vivo and functional analyses need to be carried out to determine the ability of these miRNAs to form the basis for targeted therapy for CML.


RSC Advances ◽  
2021 ◽  
Vol 11 (26) ◽  
pp. 15710-15721
Author(s):  
Paavai Era ◽  
RO. MU. Jauhar ◽  
V. Viswanathan ◽  
M. Madhangi ◽  
G. Vinitha ◽  
...  

This paper discusses the structural orientations and the physico-chemical properties of a single crystal of 2-amino-4,6-dimethoxypyrimidinium hydrogen (2R,3R)-tartrate 2-amino-4,6-dimethoxypyrimidine (2ADT).


Sign in / Sign up

Export Citation Format

Share Document