Physical and mechanical behaviors of thermally modified rubberwood glulam beam under sustained cyclic loading

2020 ◽  
Vol 52 (3) ◽  
pp. 298-312
Author(s):  
T. Pulngern ◽  
T. Udtaranakron ◽  
K. Chanto
2006 ◽  
Vol 128 (6) ◽  
pp. 823-829 ◽  
Author(s):  
Edward J. Vresilovic ◽  
Wade Johannessen ◽  
Dawn M. Elliott

Mechanical function of the intervertebral disc is maintained through the interaction between the hydrated nucleus pulposus, the surrounding annulus fibrosus, and the superior and inferior endplates. In disc degeneration the normal transfer of load between disc substructures is compromised. The objective of this study was to explore the mechanical role of the nucleus pulposus in support of axial compressive loads over time. This was achieved by measuring the elastic slow ramp and viscoelastic stress-relaxation mechanical behaviors of cadaveric sheep motion segments before and after partial nucleotomy through the endplate (keeping the annulus fibrosus intact). Mechanics were evaluated at five conditions: Intact, intact after 10,000cycles of compression, acutely after nucleotomy, following nucleotomy and 10,000cycles of compression, and following unloaded recovery. Radiographs and magnetic resonance images were obtained to examine structure. Only the short time constant of the stress relaxation was altered due to nucleotomy. In contrast, cyclic loading resulted in significant and large changes to both the stiffness and stress relaxation behaviors. Moreover, the nucleotomy had little to no effect on the disc mechanics after cyclic loading, as there were no significant differences comparing mechanics after cyclic loading with or without the nucleotomy. Following unloaded recovery the mechanical changes that had occurred as a consequence of cyclic loading were restored, leaving only a sustained change in the short time constant due to the trans-endplate nucleotomy. Thus the swelling and redistribution of the remaining nucleus pulposus was not able to fully restore mechanical behaviors. This study reveals insights into the role of the nucleus pulposus in disc function, and provides new information toward the potential role of altered nucleus pulpous function in the degenerative cascade.


2019 ◽  
Vol 86 (6) ◽  
Author(s):  
Danming Zhong ◽  
Junjie Liu ◽  
Yuhai Xiang ◽  
Tenghao Yin ◽  
Wei Hong ◽  
...  

A soft adhesive layer bonded between two rigid substrates, which are being pulled apart, may exhibit diverse instability phenomena before failure, such as cavitation, fingering, and fringe instability. In this study, by subdividing the soft layers into different numbers of disconnected smaller parts, we achieve desired instability modes and mechanical responses of the layer. The partition process not only retains the monotonicity on the tensile curve but also tunes the modulus and stretchability of the adhesive layer. Meanwhile, cavitation in layers of large aspect ratios is suppressed, and the hysteresis during cyclic loading is reduced. This study provides a guideline for the structural design of soft joints and adhesive layers.


2014 ◽  
Vol 8 (1) ◽  
pp. 166-171 ◽  
Author(s):  
Qinyan Zhao ◽  
Zhongyong Zhang ◽  
Jiliang Liu ◽  
Mingjin Chu

To study mechanical behaviors of shear walls built with precast two-way hollow slabs, two shear walls with different details of hollow slabs were quasi-statically tested under low cyclic loading. The failure mode was analyzed, which vertical macro-cracks appeared on walls due to the details of hollow slabs. Brittle shear failure can be avoided in terms of the failure behaviors evolved from integral wall to the combination of wall and columns. Test results also show that that dimension of transverse holes can affect compressive capacity of the walls when it is larger than that of longitudinal holes in the hollow slab.


2014 ◽  
Vol 30 ◽  
pp. e88-e89
Author(s):  
S.F. Chuang ◽  
X.F. Hong ◽  
T.Y.F. Chen

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yang Zhou ◽  
Shengrui Su ◽  
Peng Li

Many geological engineering hazards are closely related to the dynamic mechanical behaviors of rock materials. However, the dynamic mechanical behaviors of phyllite are less studied. In this study, we have carried out a series of triaxial cyclic tests on dry and water-saturated phyllite by employing the MTS 815 servohydraulic testing system and AE testing equipment to reveal the mechanical behavior, energy release, and crack distribution characteristics of phyllite. Results show that phyllite is a water-sensitive rock. Water and cyclic loading substantially affect the compressive strength, crack damage stress, deformation parameters, dilatancy, energy release, and crack distribution characteristics of phyllite. Furthermore, based on the dissipated energy, a new damage variable for phyllite is established. The critical damage variable for phyllite is approximately 0.80; this variable can be used as an index to predict the failure of phyllite. The water saturation effect of phyllite is very obvious; that is, it results in the weakness of mechanical properties of phyllite and changes the AE energy release and crack distribution characteristics of phyllite. This research can provide guidance for engineering construction and disaster prevention and control.


Sign in / Sign up

Export Citation Format

Share Document