glulam beam
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 24)

H-INDEX

6
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6494
Author(s):  
Mingfei Li ◽  
Mingtao Wu ◽  
Nan Guo ◽  
Lidan Mei ◽  
Yan Zhao

An anchorage device is an integral part of the prestressed Glulam beams. Therefore, its rationality and practicability have significant effects on the mechanical performance of the prestressed beams. To investigate the impact of the anchorage devices on the bearing capacity and stiffness of the prestressed beams, this paper compared and analyzed four kinds of anchors in detail through the finite element software. The results showed that when the initial mid-span deflection was 5 mm, 10 mm, and 15 mm, the bearing capacity of prestressed beams with four anchorage devices was 80.37–177.24%, 93.56–182.51%, and 95.62–194.60% higher than that of ordinary Glulam beam, respectively. When the initial mid-span top prestresses were 1 MPa, 1.5 MPa, and 2 MPa, the bearing capacity of prestressed beams with four anchorage devices was 101.71–172.57%, 105.85–175.88%, and 109.64–180.87% higher than that of ordinary Glulam beam, respectively. In addition, based on the simulation results, the prestressed beam with the external anchorage had the highest bearing capacity and stiffness. The deformation capacity of the beam with boot anchorage was the largest. The stress distribution of the beam installed under beam anchorage was the most uniform, and the beam with slotted anchorage was easy to cause stress concentration at the notch. Finally, based on the outstanding performance of the external anchorage, it was selected to carry out one experiment, and the experimental result showed that the simulation could predict the damage model and load–deflection relationship of the prestressed beams well.


2021 ◽  
pp. 103520
Author(s):  
Ya-Jie Wu ◽  
Qi-Fang Xie ◽  
Yi Zhang ◽  
Li-Peng Zhang ◽  
Hui-Feng Yang

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5272-5286
Author(s):  
Huifeng Yang ◽  
Chaochao Wang ◽  
Junbin Hu ◽  
Haotian Tao ◽  
Jiwei Liu ◽  
...  

To evaluate the static and seismic behaviour of glulam beam-to-column connections with screwed-in threaded rods, nine specimens grouped in three were tested under both monotonic and reversed cyclic loads. The failure modes, moment resistance, initial rotation stiffness, ductility, and energy dissipation capacity of the developed connections were investigated. The results indicated that the developed beam-to-column connections showed superior structural performance. Furthermore, with the introduction of a steel bracket, the hybrid screwed-in threaded rod connection features larger stiffness, higher load-carrying capacity, remarkable ductility, and better energy dissipation capacity. The main failure modes included the yielding of steel brackets, as well as the yielding or rupture of the threaded rods, which indicated a ductile behaviour. The connection specimens with steel columns showed larger stiffness than those with glulam columns, which is reasonable for the bigger compressive deformation of glulam columns.


2021 ◽  
Vol 13 (10) ◽  
pp. 5556
Author(s):  
Nan Guo ◽  
Chao Yang ◽  
Ling Li ◽  
Guodong Li ◽  
Yan Zhao

Due to wood creep characteristics, the failure mode, bearing capacity, stiffness, and deformation of its components are doomed to be impacted by long-term loading. This paper conducted a comparative test on creep beams, regulated beams, and short-term beams based on the former long-term loading research. The results demonstrated that the glulam beam experienced tensile failure of the beam-bottom, while the horizontal joint failure and the local compressive failure of the beam-end happened in the reinforced glulam beam and the prestressed glulam beam. The bearing capacity of the creep beams decreased compared with that of the short-term beams; the decline in the bearing capacity of the ordinary glulam beams, the reinforced glulam beams, and the prestressed glulam beams ranged from 4.22% to 9.83%, from 2.64% to 13.23%, and from 2.90% to 9.16%, respectively. However, the bearing capacity of the regulated beam with the deformation restored to the initial value of the load increased by 4.62–14.08%. The prestressed regulation changed the distribution of the stress on the beam and thus enhanced its bearing capacity. The findings of this work could be used as a frame of reference for similar components in engineering applications.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Minjuan He ◽  
Minmin Li ◽  
Zheng Li ◽  
Guirong He ◽  
Yongliang Sun

Author(s):  
F. Niklas Schietzold ◽  
Wolfgang Graf ◽  
Michael Kaliske

Abstract Deterministic design and a priori parameters are used in traditional optimization approaches. The material characteristics of solid wood are not deterministic in reality. Hence, realistic optimization and simulation methods need to take the uncertainties of parameters into account. The uncertainty characteristics of wood are mainly originated in natural variation. In addition to this, incertitudes from lack of knowledge are inherent. Accordingly, the aleatoric approach of randomness can be expanded to a polymorphic uncertainty model. Fuzzy probability based randomness is used in this work. Therefore, the epistemic approach of fuzziness is taken into account. The distribution functions of random variables are parametrized by fuzzy variables. So coupling of both, aleatoric and epistemic uncertainties, is involved.Interactions of fuzzy variables and crosscorrelations of random variables are considered among and within the parameters. Crosscorrelated random fields are used to represent spatial variation of material parameters. The autocovariance structures are modeled structurally dependent on the tree trunk axes. FEM results are applied as basic solutions of a loaded timber structure. A local orthotropic material formulation with respect to specifically located tree trunk axes is used. The optimal positions of the tree trunk axes for each wooden log are examined as design parameters. Polymorphic uncertainty is used to describe a priori parameters. The developed methods for uncertainty analysis are embedded in an automated and parallelized optimization processing. An analysis of a two-tier glulam beam, according to a purlin of a timber roof construction, is shown as numerical example for the optimization framework.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lidan Mei ◽  
Nan Guo ◽  
Hongliang Zuo ◽  
Ling Li ◽  
Guodong Li

In recent years, extensive attention has been drawn to prefabricated buildings, particularly wood construction. Glulam beams are the major supporting components of modern wood buildings. Since the force arm is the most critical indicator to evaluate the resistance moment of the glulam beam string structure, it is necessary to further study the influence of the force arm on the mechanical properties of the glulam beam string structure. We tested the flexural performance of 15 prestressed glulam beams, which were divided into two groups (A and B) to, respectively, research the influences of the string arm and the end arm on the bearing capacity, failure mode, stress distribution, and deformation performance of glulam beams. The results showed that when the height of the end arm remained constant and the string arm increased from 90 mm to 130 mm and 170 mm, the bearing capacity of the beam increased by 6.77% and 17.22%, respectively. Moreover, as the depth of the compression zone of the glued timber beam gradually increased, the failure mode of the beam changed from the brittle tension failure of the beam bottom to the ductile compression failure of the beam top. When the height of the string arm remained constant and the end arm increased from 10 mm to 30 mm and 50 mm, the bearing capacity of the beam increased by 4.27% and 8.13%, respectively. The beam had no significant change in the failure mode, while it could bear the stress more uniformly. Based on the experimental results and principles of equilibrium, moment equilibrium, and similar triangle, we calculated the ultimate bearing capacity of the glulam beam and proposed a design method for durable wood structures.


2021 ◽  
Vol 9 (12) ◽  
pp. 183-201
Author(s):  
Nan Guo ◽  
Jing Ren ◽  
Ling Li ◽  
Yan Zhao ◽  
Mingtao Wu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document