scholarly journals PRINSIP KETIDAKPASTIAN HEISENBERG DALAM TINJAUAN KEMAJUAN PENGUKURAN KUANTUM DI ABAD 21

2020 ◽  
Vol 5 (2) ◽  
pp. 43-47
Author(s):  
Jesi Pebralia

The Heisenberg uncertainty principle is the basic foundation of quantum physics that characterizes quantum physics with classical physics. The Heisenberg uncertainty principle provides boundaries where there are no absolute measurement results in any quantum measurement. Along with the development of increasingly sophisticated measurement instruments in the 21st century, presents the opportunity for the emergence of modifications from the Heisenberg uncertainty principle from the general form of existing formulations. This study aims to provide an overview of the opportunities for Heisenberg uncertainty formulation and provide a description of the stages of the Heisenberg uncertainty formulation's uncertainty formulations that have been reviewed by previous researchers. The research method used is the method of literature study that aims to find out the background and theories of the development of Heisenberg's uncertainty principle and to explain the formulation directly which aims to determine the technical sequence of modifications to the existing formulation. Through this research, the authors managed to get an opportunity for the emergence of new modifications to the Heisenberg uncertainty principle formulation.

Author(s):  
Anurag Chapagain

Abstract: It is a well-known fact in physics that classical mechanics describes the macro-world, and quantum mechanics describes the atomic and sub-atomic world. However, principles of quantum mechanics, such as Heisenberg’s Uncertainty Principle, can create visible real-life effects. One of the most commonly known of those effects is the stability problem, whereby a one-dimensional point base object in a gravity environment cannot remain stable beyond a time frame. This paper expands the stability question from 1- dimensional rod to 2-dimensional highly symmetrical structures, such as an even-sided polygon. Using principles of classical mechanics, and Heisenberg’s uncertainty principle, a stability equation is derived. The stability problem is discussed both quantitatively as well as qualitatively. Using the graphical analysis of the result, the relation between stability time and the number of sides of polygon is determined. In an environment with gravity forces only existing, it is determined that stability increases with the number of sides of a polygon. Using the equation to find results for circles, it was found that a circle has the highest degree of stability. These results and the numerical calculation can be utilized for architectural purposes and high-precision experiments. The result is also helpful for minimizing the perception that quantum mechanical effects have no visible effects other than in the atomic, and subatomic world. Keywords: Quantum mechanics, Heisenberg Uncertainty principle, degree of stability, polygon, the highest degree of stability


2011 ◽  
Vol 3 (1) ◽  
pp. 7-20 ◽  
Author(s):  
Ewa Drabik

Classical and Quantum Physics in Selected Economic ModelsA growing number of economic phenomena are nowadays described with methods known in physics. The most frequently applied physical theories by economists are: (1) the universal gravitation law and (2) the first and second law of thermodynamics. Physical principles can also be applied to the theory of financial markets. Financial markets are composed of individual participants who may be seen to interact as particles in a physical system. This approach proposes a financial market model known as a minority game model in which securities and money are allocated on the basis of price fluctuations, and where selling is best option when the vast majority of investors tend to purchase goods or services, and vice versa. The players who end up being on the minority side win.The above applications of physical methods in economics are deeply rooted in classical physics. However, this paper aims to introduce the basic concepts of quantum mechanics to the process of economic phenomena modelling. Quantum mechanics is a theory describing the behaviour of microscopic objects and is grounded on the principle of wave-particle duality. It is assumed that quantum-scale objects at the same time exhibit both wave-like and particle-like properties. The key role in quantum mechanics is played by: (1) the Schrödinger equation describing the probability amplitude for the particle to be found in a given position and at a given time, and as (2) the Heisenberg uncertainty principle stating that certain pairs of physical properties cannot be economic applications of the Schrödinger equation as well as the Heisenberg uncertainty principle. We also try to describe the English auction by means the quantum mechanics methods.


Author(s):  
Rishi Dutt Sharma

Quantum cryptography is an emerging technology in which two parties can secure network Communications by applying the phenomena of quantum physics. The security of these transmissions is based on the inviolability of the laws of quantum mechanics. Quantum cryptography was born in the early seventies when Steven wiesner wrote “conjugate coding”. The quantum cryptography relies on two important elements of quantum mechanics-the Heisenberg uncertainty principle and the principle of photon polarization. The Heisenberg uncertainty principle states that, it is not possible to measure the quantum state of any system without distributing that system. The principle of photon polarization states that, an eavesdropper cannot copy unknownqubits i.e. unknown quantum states, due to no-cloning Theorem which was first presented by wootters andzurek in 1982.this research paper concentrates on the theory of quantum cryptography, and how this technology contributes to the network security. This research paper summarizes the current state of Quantum cryptography, and the real world application implementation of this technology and finally the future direction in which quantum cryptography is forwards


1993 ◽  
Vol 48 (3) ◽  
pp. 447-451 ◽  
Author(s):  
Reinhard Honegger

Abstract Realizing the canonical commutation relations (CCR) [N, Θ] = - i as N = - i d/dϑ and Θ to be the multiplication by ϑ on the Hilbert space of square integrable functions on [0, 2π], in the physical literature there seems to be some contradictions concerning the Heisenberg uncertainty principle ⟨ΔN⟨ ⟨ΔΘ⟨ ≥ 1/4. The difficulties may be overcome by a rigorous mathematical analysis of the domain of state vectors, for which Heisenberg's inequality is valid. It is shown that the exponentials exp {i t N} and exp{i sΘ} satisfy some commutation relations, which are not the Weyl relations. Finally, the present work aims at a better understanding of the phase and number operators in non-Fock representations.


2020 ◽  
Author(s):  
Wen-Xiang Chen

Associate Professor Hasegawa Yuji of the Vienna University of Technology and Professor Masaaki Ozawa of Nagoya University and other scholars published empirical results against Heisenberg's uncertainty principle on January 15, 2012.They got a measurement result with a smaller error than the Heisenberg uncertainty principle, which proved the measurement advocated by the Heisenberg uncertainty principle.This article follows the method I used to study superradiation and connects the uncertainty principle with the superradiation effect. I found that under the superradiation effect, the measurement limit of the uncertainty principle can be smaller.


2018 ◽  
Vol 33 (29) ◽  
pp. 1830028
Author(s):  
B. F. L. Ward

Working in the context of the Planck scale cosmology formulation of Bonanno and Reuter, we use our resummed quantum gravity approach to Einstein’s general theory of relativity to estimate the value of the cosmological constant as [Formula: see text]. We show that SUSY GUT models are constrained by the closeness of this estimate to experiment. We also address various consistency checks on the calculation. In particular, we use the Heisenberg uncertainty principle to remove a large part of the remaining uncertainty in our estimate of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document