rigorous mathematical analysis
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 0)

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 2993
Author(s):  
Xin Jiang

This paper studies the global dynamics of a cholera model incorporating age structures and general infection rates. First, we explore the existence and point dissipativeness of the orbit and analyze the asymptotical smoothness. Then, we perform rigorous mathematical analysis on the existence and local stability of equilibria. Based on the uniform persistence, we further investigate the global behavior of the cholera infection model. The results of theoretical analysis are well confirmed by numerical simulations. This research generalizes some known results and provides deeper insights into the dynamics of cholera propagation.


Author(s):  
Jiaqi Yang

When a liquid fills the semi-infinite space between two concentric cylinders which rotate at different steady speeds, how about the shape of the free surface on top of the fluid? The different fluids will lead to a different shape. For the Newtonian fluid, the meniscus descends due to the centrifugal forces. However, for the certain non-Newtonian fluid, the meniscus climbs the internal cylinder. We want to explain the above phenomenon by a rigorous mathematical analysis theory. In the present paper, as the first step, we focus on the Newtonian fluid. This is a steady free boundary problem. We aim to establish the well-posedness of this problem. Furthermore, we prove the convergence of the formal perturbation series obtained by Joseph and Fosdick in Arch. Ration. Mech. Anal. 49 (1973), 321–380.


2021 ◽  
Author(s):  
Elamin H. Elbasha ◽  
Abba B. Gumel

AbstractIt has been suggested, without rigorous mathematical analysis, that the classical vaccine-induced herd immunity threshold (HIT) assuming a homogeneous population can be substantially higher than the minimum HIT obtained when considering population heterogeneities. We investigated this claim by developing, and rigorously analyzing, a vaccination model that incorporates various forms of heterogeneity and compared it with a model of a homogeneous population. By employing a two-group vaccination model in heterogeneous populations, we theoretically established conditions under which heterogeneity leads to different HIT values, depending on the relative values of the contact rates for each group, the type of mixing between groups, relative vaccine efficacy, and the relative population size of each group. For example, under biased random mixing and when vaccinating a given group results in disproportionate prevention of higher transmission per capita, it is optimal to vaccinate that group before vaccinating other groups. We also found situations, under biased assortative mixing assumption, where it is optimal to vaccinate more than one group. We show that regardless of the form of mixing between groups, the HIT values assuming a heterogeneous population are always lower than the HIT values obtained from a corresponding model with a homogeneous population. Using realistic numerical examples and parametrization (e.g., assuming assortative mixing together with vaccine efficacy of 95% and basic reproduction number of 2.5), we demonstrate that the HIT value considering heterogeneity (e.g., biased assortative mixing) is significantly lower (40%) compared with a HIT value of (63%) assuming a homogeneous population.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
S. M. Nuugulu ◽  
F. Gideon ◽  
K. C. Patidar

AbstractDividend paying European stock options are modeled using a time-fractional Black–Scholes (tfBS) partial differential equation (PDE). The underlying fractional stochastic dynamics explored in this work are appropriate for capturing market fluctuations in which random fractional white noise has the potential to accurately estimate European put option premiums while providing a good numerical convergence. The aim of this paper is two fold: firstly, to construct a time-fractional (tfBS) PDE for pricing European options on continuous dividend paying stocks, and, secondly, to propose an implicit finite difference method for solving the constructed tfBS PDE. Through rigorous mathematical analysis it is established that the implicit finite difference scheme is unconditionally stable. To support these theoretical observations, two numerical examples are presented under the proposed fractional framework. Results indicate that the tfBS and its proposed numerical method are very effective mathematical tools for pricing European options.


2020 ◽  
Vol 30 (15) ◽  
pp. 2030044
Author(s):  
Mohamed Gheouali ◽  
Tounsia Benzekri ◽  
René Lozi ◽  
Guanrong Chen

Based on the Hodgkin–Huxley and Hindmarsh–Rose models, this paper proposes a geometric phenomenological model of bursting neuron in its simplest form, describing the dynamic motion on a mug-shaped branched manifold, which is a cylinder tied to a ribbon. Rigorous mathematical analysis is performed on the nature of the bursting neuron solutions: the number of spikes in a burst, the periodicity or chaoticity of the bursts, etc. The model is then generalized to obtain mixing burst of any number of spikes. Finally, an example is presented to verify the theoretical results.


2018 ◽  
Vol 24 (4) ◽  
pp. 1161-1181 ◽  
Author(s):  
Tomáš Roubíček ◽  
Ulisse Stefanelli

A mathematical model for an elastoplastic continuum subject to large strains is presented. The inelastic response is modelled within the frame of rate-dependent gradient plasticity for non-simple materials. Heat diffuses through the continuum by the Fourier law in the actual deformed configuration. Inertia makes the nonlinear problem hyperbolic. The modelling assumption of small elastic Green–Lagrange strains is combined in a thermodynamically consistent way with the possibly large displacements and large plastic strain. The model is amenable to a rigorous mathematical analysis. The existence of suitably defined weak solutions and a convergence result for Galerkin approximations is proved.


2017 ◽  
Vol 12 ◽  
pp. 22-34 ◽  
Author(s):  
Meriem Bentounsi ◽  
Imane Agmour ◽  
Naceur Achtaich ◽  
Youssef El Foutayeni

Biology of a marine resources is a descriptive science. The description is the first step towards understanding a system. However, the main objective is to present a rigorous mathematical analysis and numerical simulation of these spatio temporal models. In the present paper, we consider a two species food chain, i.e. a prey and predator populations modeled in a two-patch environment, one of which is a free fishing zone and the other one is protected zone. We study the qualitative analysis of solutions and we establish sufficient conditions under which the endemic and trivial equilibria are asymptotically stable.The asymptotic stability corresponding to the equilibria is graphically shown.


2014 ◽  
Vol 1044-1045 ◽  
pp. 1816-1819
Author(s):  
Shun Zhi Xu

This paper builds a theoretical model and hypothesis of service quality and customer loyalty based on the C2C platform. The study combined with the questionnaire of C2C electronic service quality and customer loyalty to surveyed data on a rigorous mathematical analysis to verify the hypothesis and modify the theoretical model. Finally come to the conclusion of the study, there is a direct positive relationship between service quality and customer loyalty of C2C e-commerce platform. The conclusion can be used by future researchers. At the same time, according to the analysis result of the multidimensional study on the relationship between C2C electronic service quality and the customer loyalty, we can find out the significant role of path between electronic service quality and customer loyalty and put forward corresponding strategic suggestions for electronic business. The above content makes the article has theoretical significance and practical value.


2013 ◽  
Vol 344 ◽  
pp. 125-128
Author(s):  
Fei Cao ◽  
Qing Yun Liu ◽  
Fan Wu

A rigorous mathematical analysis of cross-eye jamming in a radar system scenario and an expression for the induced angular error due to the cross-eye jammer are presented. The simulation results show that there is a Doppler difference between jamming and target return. The Doppler difference increases with the decrease of the distance between the monopulse radar and the platform protected by cross-eye jammer. When the power of target return is not small enough with respect to the power of jamming transmitted by one of the two sources, maybe the sign of the indicated angle is uncontrollable. The simulation results also show that although the cross-eye gain is maximized if two jamming signals are equal amplitude and antiphase, it is not a reasonable choice.


Sign in / Sign up

Export Citation Format

Share Document