Atomic mapping of topological domains in strained ferroelectric films

2021 ◽  
Author(s):  
Yin Lian ZHU ◽  
Author(s):  
S. G. Ghonge ◽  
E. Goo ◽  
R. Ramesh ◽  
R. Haakenaasen ◽  
D. K. Fork

Microstructure of epitaxial ferroelectric/conductive oxide heterostructures on LaAIO3(LAO) and Si substrates have been studied by conventional and high resolution transmission electron microscopy. The epitaxial films have a wide range of potential applications in areas such as non-volatile memory devices, electro-optic devices and pyroelectric detectors. For applications such as electro-optic devices the films must be single crystal and for applications such as nonvolatile memory devices and pyroelectric devices single crystal films will enhance the performance of the devices. The ferroelectric films studied are Pb(Zr0.2Ti0.8)O3(PLZT), PbTiO3(PT), BiTiO3(BT) and Pb0.9La0.1(Zr0.2Ti0.8)0.975O3(PLZT).Electrical contact to ferroelectric films is commonly made with metals such as Pt. Metals generally have a large difference in work function compared to the work function of the ferroelectric oxides. This results in a Schottky barrier at the interface and the interfacial space charge is believed to responsible for domain pinning and degradation in the ferroelectric properties resulting in phenomenon such as fatigue.


1998 ◽  
Vol 08 (PR9) ◽  
pp. Pr9-261-Pr9-264
Author(s):  
M. Tyunina ◽  
J. Levoska ◽  
A. Sternberg ◽  
V. Zauls ◽  
M. Kundzinsh ◽  
...  

2020 ◽  
Author(s):  
Linxing Zhang ◽  
Darui Sun ◽  
Maosheng Chai ◽  
Xianran Xing ◽  
Jun Chen ◽  
...  
Keyword(s):  

2004 ◽  
Vol 84 (14) ◽  
pp. 2626-2628 ◽  
Author(s):  
J.-H. Li ◽  
L. Chen ◽  
V. Nagarajan ◽  
R. Ramesh ◽  
A. L. Roytburd

2021 ◽  
Vol 129 (5) ◽  
pp. 054103
Author(s):  
S. Kondovych ◽  
A. Gruverman ◽  
I. Luk’yanchuk
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Yin ◽  
Hongxiang Zong ◽  
Hong Tao ◽  
Xuefei Tao ◽  
Haijun Wu ◽  
...  

AbstractMultitudinous topological configurations spawn oases of many physical properties and phenomena in condensed-matter physics. Nano-sized ferroelectric bubble domains with various polar topologies (e.g., vortices, skyrmions) achieved in ferroelectric films present great potential for valuable physical properties. However, experimentally manipulating bubble domains has remained elusive especially in the bulk form. Here, in any bulk material, we achieve self-confined bubble domains with multiple polar topologies in bulk Bi0.5Na0.5TiO3 ferroelectrics, especially skyrmions, as validated by direct Z-contrast imaging. This phenomenon is driven by the interplay of bulk, elastic and electrostatic energies of coexisting modulated phases with strong and weak spontaneous polarizations. We demonstrate reversable and tip-voltage magnitude/time-dependent donut-like domain morphology evolution towards continuously and reversibly modulated high-density nonvolatile ferroelectric memories.


2021 ◽  
Vol 129 (18) ◽  
pp. 184103
Author(s):  
M. J. Zou ◽  
Y. L. Tang ◽  
Y. P. Feng ◽  
W. R. Geng ◽  
X. L. Ma ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Yudin ◽  
K. Shapovalov ◽  
T. Sluka ◽  
J. Peräntie ◽  
H. Jantunen ◽  
...  

AbstractThe intrinsic mobile interfaces in ferroelectrics—the domain walls can drive and enhance diverse ferroelectric properties, essential for modern applications. Control over the motion of domain walls is of high practical importance. Here we analyse theoretically and show experimentally epitaxial ferroelectric films, where mobile domain walls coexist and interact with immobile growth-induced interfaces—columnar boundaries. Whereas these boundaries do not disturb the long-range crystal order, they affect the behaviour of domain walls in a peculiar selective manner. The columnar boundaries substantially modify the behaviour of non-ferroelastic domains walls, but have negligible impact on the ferroelastic ones. The results suggest that introduction of immobile boundaries into ferroelectric films is a viable method to modify domain structures and dynamic responses at nano-scale that may serve to functionalization of a broader range of ferroelectric films where columnar boundaries naturally appear as a result of the 3D growth.


Sign in / Sign up

Export Citation Format

Share Document