scholarly journals Extra ordinary properties and importance of water

2017 ◽  
Vol 5 (01) ◽  
Author(s):  
A. K. Chaturvedi

Life originated from water. It is a universal solvent. Useless and toxic materials are excreted from body through water. Many compounds form hydrogen bond with water and are soluble in water. Water is a polar solvent. Due to this property of water, many electrolyte dissolve in it. One water molecule is bonded with four water molecule due to hydrogen bond. Water maintains body temperature and helps to maintain various metabolic activities of body.

2006 ◽  
Vol 62 (5) ◽  
pp. o1754-o1755
Author(s):  
Neng-Fang She ◽  
Sheng-Li Hu ◽  
Hui-Zhen Guo ◽  
An-Xin Wu

The title compound, C24H18Br2N4O2·H2O, forms a supramolecular structure via N—H...O, O—H...O and C—H...O hydrogen bonds. In the crystal structure, the water molecule serves as a bifurcated hydrogen-bond acceptor and as a hydrogen-bond donor.


2019 ◽  
Vol 4 (2) ◽  

The present study was done in order to evaluate connection between body temperature and fear of rides. About 120 disciples of Baha Uddin Zakariya University took part in this study. Isothermal, also known as the normal temperature of body is one of the most important factors in maintaining the metabolic activities of the body that are vital for life. It normal value is 37 °C. It can be measured by using mercury thermometer [1]. It is measured on certain body positions like forehead, mouth and rectum. Fear of rides is common among people who have other phobias like claustrophobia, acrophobia etc. Those people whose body temperature is 97 are more afraid of rides as compared to those people who have low body temperature.


IUCrData ◽  
2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Błażej Dziuk ◽  
Anna Jezuita

The asymmetric unit of the title compound, C10H9N2 +·0.5C2O4 2−·C2H2O4·H2O, consists of a 2,2′-bipyridinium cation, half an oxalate dianion, one oxalic acid and one water molecule. One N atom in 2,2′-bipyridine is unprotonated, while the second is protonated and forms an N—H...O hydrogen bond. In the crystal, the anions are connected with surrounding acid molecules and water molecules by strong near-linear O—H...O hydrogen bonds. The water molecules are located between the anions and oxalic acids; their O atoms participate as donors and acceptors, respectively, in O—H...O hydrogen bonds, which form sheets arranged parallel to the ac plane.


2019 ◽  
Vol 34 (4) ◽  
pp. 389-395 ◽  
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of atropine sulfate monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Atropine sulfate monohydrate crystallizes in space group P21/n (#14) with a = 19.2948(5), b = 6.9749(2), c = 26.9036(5) Å, β = 94.215(2)°, V = 3610.86(9) Å3, and Z = 4. Each of the two independent protonated nitrogen atoms participates in a strong hydrogen bond to the sulfate anion. Each of the two independent hydroxyl groups acts as a donor in a hydrogen bond to the sulfate anion, but only one of the water molecule hydrogen atoms acts as a hydrogen bond donor to the sulfate anion. The hydrogen bonds are all discrete but link the cations, anion, and water molecule along [101]. Although atropine and hyoscyamine (atropine is racemic hyoscyamine) crystal structures share some features, such as hydrogen bonding and phenyl–phenyl packing, the powder patterns show that the structures are very different. The powder pattern for atropine sulfate monohydrate has been submitted to ICDD for inclusion in the Powder Diffraction File™.


2019 ◽  
Vol 797 ◽  
pp. 118-126
Author(s):  
Nornizar Anuar ◽  
Wan Nor Asyikin Wan Mohamed Daid ◽  
Sopiah Ambong Khalid ◽  
Sarifah Fauziah Syed Draman ◽  
Siti Rozaimah Sheikh Abdullah

In this paper, chemically modified cellulose was used instead of cellulose as it offers higher adsorption capacities, great chemical strength and good resistance to heat. As part of Phyto-Adsorption Remediation Method, citric acid modified cellulose (CAMC) was used to treat ferric ion. However, there is a large possibility that CAMC molecule might interact with water molecule that contain hydrogen bond and hence pose as a competitor to ferric acid and reduces the efficiency of CAMC in ferric ion removal. Thus, the aim of this work is to identify the most stable hydrogen bond between CAMC and water, by using a computational technique. The interaction between the water molecules and CAMC was observed by varying the volume of water molecule with modified cellulose by an expansion in amorphous region. The simulation result shows that for water loading less than 20 molecules, the interaction between water molecules and CAMC is higher at temperature 311K, whilst for water loading higher than 20 molecules, the interaction weakens at higher temperature. This work proves that water molecules have the tendency to bind to carboxyl group of glucose, to oxygen of ester and to oxygen of anhydride acid of the CAMC molecule, which might pose a competition for ferric acid removal. The calculation of coordination number has shown that the number of atoms present in the first hydration shell (of radius < 2.5Å) is more as the temperature increases from 298K to 311K, which indicates that the adsorption is better at higher temperature. For hydration shell at radius >2.5Å, cell temperature is not significant to the number of atoms present.


2007 ◽  
Vol 63 (3) ◽  
pp. o1173-o1175
Author(s):  
Stephanie M. Witko ◽  
Mark Davison ◽  
Hugh W. Thompson ◽  
Roger A. Lalancette

In the title crystal structure, C9H14O3·H2O, the water molecule accepts a hydrogen bond from the carboxyl group [O...O = 2.6004 (13) Å and O—H...O = 163°], while donating hydrogen bonds to the ketone [O...O = 2.8193 (14) Å and O—H...O = 178 (2)°] and the acid carbonyl groups [O...O = 2.8010 (14) Å and O—H...O = 174 (2)°]. This creates a network of hydrogen bonds confined within a continuous flat ribbon two molecules in width and extending in the [101] direction.


2014 ◽  
Vol 70 (4) ◽  
pp. o382-o383
Author(s):  
Matthias Gehringer ◽  
Ellen Pfaffenrot ◽  
Peter R. W. E. F. Keck ◽  
Dieter Schollmeyer ◽  
Stefan A. Laufer

In the title compound, C18H24N6O·H2O, the piperidine ring adopts a chair conformation with an N—C—C—C torsion angle of 39.5 (5)° between thecis-related substituents. The pyrrole N—H group forms a water-mediated intermolecular hydrogen bond to one of the N atoms of the annelated pyrimidine ring. The water molecule connects two organic molecules and is disorderd over two positions (occupancies of 0.48 and 0.52). The crystal packing shows zigzag chains of alternating organic and water molecules running parallel to theaaxis.


Sign in / Sign up

Export Citation Format

Share Document