scholarly journals Numerical Simulation of the Solitary Waves Propagation and Run-up in Shallow Water

2021 ◽  
Vol 28 (6) ◽  
Author(s):  
A. Yu. Belokon ◽  
S. Yu. Mikhailichenko ◽  
◽  
2015 ◽  
Vol 70 (9) ◽  
pp. 2270-2281 ◽  
Author(s):  
Asghar Farhadi ◽  
Homayoun Emdad ◽  
Ebrahim Goshtasbi Rad

2018 ◽  
Author(s):  
José Manuel González-Vida ◽  
Jorge Macías ◽  
Manuel Jesús Castro ◽  
Carlos Sánchez-Linares ◽  
Marc de la Asunción ◽  
...  

Abstract. The 1958 Lituya Bay landslide-generated mega-tsunami is simulated using the Landslide-HySEA model, a recently developed finite volume Savage-Hutter Shallow Water coupled numerical model. Two factors are crucial if the main objective of the numerical simulation is to reproduce the maximal run-up, with an accurate simulation of the inundated area and a precise re-creation of the known trimline of the 1958 mega-tsunami of Lituya Bay. First, the accurate reconstruction of the initial slide. Then, the choice of a suitable coupled landslide-fluid model able to reproduce how the energy released by the landslide is transmitted to the water and then propagated. Given the numerical model, the choice of parameters appears to be a point of major importance, this leads us to perform a sensitivity analysis. Based on public domain topo-bathymetric data, and on information extracted from the work of Miller (1960), an approximation of Gilbert Inlet topo-bathymetry was set up and used for the numerical simulation of the mega-event. Once optimal model parameters were set, comparisons with observational data were performed in order to validate the numerical results. In the present work, we demonstrate that a shallow water type of model is able to accurately reproduce such an extreme event as the Lituya Bay mega-tsunami. The resulting numerical simulation is one of the first successful attempts (if not the first) at numerically reproducing in detail the main features of this event in a realistic 3D basin geometry, where no smoothing or other stabilizing factors in the bathymetric data are applied.


2021 ◽  
Vol 11 (20) ◽  
pp. 9421
Author(s):  
Diana De Padova ◽  
Lucas Calvo ◽  
Paolo Michele Carbone ◽  
Domenico Maraglino ◽  
Michele Mossa

The present paper places emphasis on the most widely used Computational Fluid Dynamics (CFD) approaches, namely the Eulerian and Lagrangian methods each of which is characterized by specific advantages and disadvantages. In particular, a weakly compressible smoothed particle (WCSPH) model, coupled with a sub-particle scale (SPS) approach for turbulent stresses and a new depth-integrated non-hydrostatic finite element model were employed for the simulation of regular breaking waves on a plane slope and solitary waves transformation, breaking and run-up. The validation of the numerical schemes was performed through the comparison between numerical and experimental data. The aim of this study is to compare the two modeling methods with an emphasis on their performance in the simulation of hydraulic engineering problems.


2019 ◽  
Vol 19 (2) ◽  
pp. 369-388 ◽  
Author(s):  
José Manuel González-Vida ◽  
Jorge Macías ◽  
Manuel Jesús Castro ◽  
Carlos Sánchez-Linares ◽  
Marc de la Asunción ◽  
...  

Abstract. The 1958 Lituya Bay landslide-generated mega-tsunami is simulated using the Landslide-HySEA model, a recently developed finite-volume Savage–Hutter shallow water coupled numerical model. Two factors are crucial if the main objective of the numerical simulation is to reproduce the maximal run-up with an accurate simulation of the inundated area and a precise recreation of the known trimline of the 1958 mega-tsunami of Lituya Bay: first, the accurate reconstruction of the initial slide and then the choice of a suitable coupled landslide–fluid model able to reproduce how the energy released by the landslide is transmitted to the water and then propagated. Given the numerical model, the choice of parameters appears to be a point of major importance, which leads us to perform a sensitivity analysis. Based on public domain topo-bathymetric data, and on information extracted from the work of Miller (1960), an approximation of Gilbert Inlet topo-bathymetry was set up and used for the numerical simulation of the mega-event. Once optimal model parameters were set, comparisons with observational data were performed in order to validate the numerical results. In the present work, we demonstrate that a shallow water type of model is able to accurately reproduce such an extreme event as the Lituya Bay mega-tsunami. The resulting numerical simulation is one of the first successful attempts (if not the first) at numerically reproducing, in detail, the main features of this event in a realistic 3-D basin geometry, where no smoothing or other stabilizing factors in the bathymetric data are applied.


Author(s):  
Livio Sebastián Maglione ◽  
Guillermo Muschiatto ◽  
Raúl Alberto DEAN

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Marin Marin ◽  
M. M. Bhatti

AbstractThe present study deals with the head-on collision process between capillary–gravity solitary waves in a finite channel. The present mathematical modeling is based on Nwogu’s Boussinesq model. This model is suitable for both shallow and deep water waves. We have considered the surface tension effects. To examine the asymptotic behavior, we employed the Poincaré–Lighthill–Kuo method. The resulting series solutions are given up to third-order approximation. The physical features are discussed for wave speed, head-on collision profile, maximum run-up, distortion profile, the velocity at the bottom, and phase shift profile, etc. A comparison is also given as a particular case in our study. According to the results, it is noticed that the free parameter and the surface tension tend to decline the solitary-wave profile significantly. However, the maximum run-up amplitude was affected in great measure due to the surface tension and the free parameter.


2018 ◽  
Vol 144 (2) ◽  
pp. 04017170
Author(s):  
Viljami Laurmaa ◽  
Marco Picasso ◽  
Gilles Steiner ◽  
Frederic M. Evers ◽  
Willi H. Hager
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document