scholarly journals Evaluation of induction of somatic embryogenesis from cotyledonary leaves of Banana Passion fruit (Passiflora mollissima) L.H Bailey

Respuestas ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 31-38
Author(s):  
Oscar José Parra Peñalosa ◽  
Giovanni Orlando Cancino Escalante

Passiflora mollissima  L.H Bailey is an endemic species from the Andes mountain of Colombia in South America with important edible fruits and medicinal and economical properties. The development of improved micropropagation techniques is necessary to provide rapid and efficient clonal propagation of elite genotypes with high resistance and uniform production, as well as a system that can be used for genetic transformation. For this reason, the investigation focused on the evaluation of induction of somatic embryogenesis in P. mollissima from cotyledonary leaves, the effect of growth regulator concentrations and the orientation of explants on embryo production. Histological analyses of somatic embryogenesis were performed every 10 days after induction over 38 days of exposure to the medium. Results showed somatic embryo formation on Murashige and Skoog, (1962) culture medium supplemented with 4.5 μM 2,4-diclorophenoxyacetic acid plus 4.5 μM 6-benzyladenine. The results obtained are applicable to knowledge of non-zygotic embryogenesis in passionflower of the Andean region, for the purpose of improvement and commercial use. It is noteworthy that this is the first study in the induction and obtaining of embryos in P. mollissima.

2011 ◽  
Vol 39 (1) ◽  
pp. 288 ◽  
Author(s):  
Adrian Ioan TIMOFTE ◽  
Doru PAMFIL ◽  
Magdalena PALADA-NICOLAU ◽  
Claudia Simona TIMOFTE

The somatic embryogenesis is an advanced method for clonal propagation and a useful tool for ex situ conservation of genetic resources. In this paper, the results of an experiment to investigate the influence of development stage of explants and culture medium on the germination percentage in two oak species (three provenances of Quercus robur and two provenances of Q. frainetto), are presented. A high significant influence of the development stage of explants and a significant influence of the interaction provenance x stage on the germination percentage were recorded for Q. robur explants, whilst no significant differences between the germination percentages against the nutritive media used were fould for both oak species.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1467
Author(s):  
Camille Salaün ◽  
Loïc Lepiniec ◽  
Bertrand Dubreucq

Somatic embryogenesis is a method of asexual reproduction that can occur naturally in various plant species and is widely used for clonal propagation, transformation and regeneration of different crops. Somatic embryogenesis shares some developmental and physiological similarities with zygotic embryogenesis as it involves common actors of hormonal, transcriptional, developmental and epigenetic controls. Here, we provide an overview of the main signaling pathways involved in the induction and regulation of somatic embryogenesis with a focus on the master regulators of seed development, LEAFY COTYLEDON 1 and 2, ABSCISIC ACID INSENSITIVE 3 and FUSCA 3 transcription factors whose precise role during both zygotic and somatic embryogenesis remains to be fully elucidated.


The Condor ◽  
2021 ◽  
Author(s):  
Natália Stefanini Da Silveira ◽  
Maurício Humberto Vancine ◽  
Alex E Jahn ◽  
Marco Aurélio Pizo ◽  
Thadeu Sobral-Souza

Abstract Bird migration patterns are changing worldwide due to current global climate changes. Addressing the effects of such changes on the migration of birds in South America is particularly challenging because the details about how birds migrate within the Neotropics are generally not well understood. Here, we aim to infer the potential effects of future climate change on breeding and wintering areas of birds that migrate within South America by estimating the size and elevations of their future breeding and wintering areas. We used occurrence data from species distribution databases (VertNet and GBIF), published studies, and eBird for 3 thrush species (Turdidae; Turdus nigriceps, T. subalaris, and T. flavipes) that breed and winter in different regions of South America and built ecological niche models using ensemble forecasting approaches to infer current and future potential distributions throughout the breeding and wintering periods of each species. Our findings point to future shifts in wintering and breeding areas, mainly through elevational and longitudinal changes. Future breeding areas for T. nigriceps, which migrates along the Andes Mountains, will be displaced to the west, while breeding displacements to the east are expected for the other 2 species. An overall loss in the size of future wintering areas was also supported for 2 of the species, especially for T. subalaris, but an increase is anticipated for T. flavipes. Our results suggest that future climate change in South America will require that species shift their breeding and wintering areas to higher elevations in addition to changes in their latitudes and longitude. Our findings are the first to show how future climate change may affect migratory birds in South America throughout the year and suggest that even closely related migratory birds in South America will be affected in different ways, depending on the regions where they breed and overwinter.


1994 ◽  
Vol 70 (5) ◽  
pp. 593-598 ◽  
Author(s):  
G. W. Adams ◽  
M. G. Doiron ◽  
Y. S. Park ◽  
J. M. Bonga ◽  
P. J. Charest

The somatic embryogenesis process was evaluated as a potential tool for operational vegetative propagation using individuals from families currently used in the J.D. Irving, Ltd. black spruce tree improvement program. Most families were responsive although the number of individuals within families capable of producing embryogenic tissue (ET) varied greatly (1–70%). Seventy-four percent of the ET clones produced mature embryos and most of these germinated. Greenhouse survival was initially low (11%) but improved in subsequent experiments to 45% as growing regimes were refined. Demonstration plantings of the resulting somatic plants were established at two sites in New Brunswick. A total of 206 clones were cryopreserved. The potential for integrating somatic embryogenesis techniques into tree improvement and stock production programs is discussed. Key words: tree improvement, somatic embryogenesis, clonal propagation, black spruce, biotechnology


Sign in / Sign up

Export Citation Format

Share Document