zygotic embryogenesis
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 23)

H-INDEX

22
(FIVE YEARS 2)

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Shehu A. Tadda ◽  
Xiaohua Kui ◽  
Hongjuan Yang ◽  
Min Li ◽  
Zhehong Huang ◽  
...  

As an emerging technology, shoot encapsulation has been employed in germplasm conservation, distribution, and micropropagation of elite plant species. However, the production of synthetic seeds of sweet potato via non-zygotic embryogenesis requires a large number of embryos per cultured callus suspension and is labour-intensive. Here, we reported a simple method of encapsulating in vitro derived vegetable sweet potato nodal segments with sodium alginate, calcium chloride (CaCl2), and Murashige and Skoog (MS) salts. The nodes encapsulated with 4% sodium alginate (w/v) and 100 mM CaCl2 were the most suitable for propagation. They had uniform spherical beads and took the least number of days to shoot and root emergence. These plantlets produced more leaves, roots, and long shoots. Further evaluation of the MS salts concentration revealed that the plantlets encapsulated and grown with ½ MS salts had the least days to shoot and root emergence. They also had a longer shoot, the highest conversion rate (99%), and the least leaf abscission (17%). Thus, the sweet potato nodal segments encapsulated with 4% sodium alginate, 100 mM CaCl2, and ½ MS salts could be used as excellent material for micropropagation, germplasm conservation, and exchange of sweet potato planting materials.


2021 ◽  
Vol 22 (21) ◽  
pp. 11807
Author(s):  
Janet Juarez-Escobar ◽  
Esaú Bojórquez-Velázquez ◽  
Jose M. Elizalde-Contreras ◽  
José A. Guerrero-Analco ◽  
Víctor M. Loyola-Vargas ◽  
...  

Embryogenesis is the primary developmental program in plants. The mechanisms that underlie the regulation of embryogenesis are an essential research subject given its potential contribution to mass in vitro propagation of profitable plant species. Somatic embryogenesis (SE) refers to the use of in vitro techniques to mimic the sexual reproduction program known as zygotic embryogenesis (ZE). In this review, we synthesize the current state of research on proteomic and metabolomic studies of SE and ZE in angiosperms (monocots and dicots) and gymnosperms. The most striking finding was the small number of studies addressing ZE. Meanwhile, the research effort focused on SE has been substantial but disjointed. Together, these research gaps may explain why the embryogenic induction stage and the maturation of the somatic embryo continue to be bottlenecks for efficient and large-scale regeneration of plants. Comprehensive and integrative studies of both SE and ZE are needed to provide the molecular foundation of plant embryogenesis, information which is needed to rationally guide experimental strategies to solve SE drawbacks in each species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lucija Markulin ◽  
Andreja Škiljaica ◽  
Mirta Tokić ◽  
Mateja Jagić ◽  
Tamara Vuk ◽  
...  

During plant embryogenesis, regardless of whether it begins with a fertilized egg cell (zygotic embryogenesis) or an induced somatic cell (somatic embryogenesis), significant epigenetic reprogramming occurs with the purpose of parental or vegetative transcript silencing and establishment of a next-generation epigenetic patterning. To ensure genome stability of a developing embryo, large-scale transposon silencing occurs by an RNA-directed DNA methylation (RdDM) pathway, which introduces methylation patterns de novo and as such potentially serves as a global mechanism of transcription control during developmental transitions. RdDM is controlled by a two-armed mechanism based around the activity of two RNA polymerases. While PolIV produces siRNAs accompanied by protein complexes comprising the methylation machinery, PolV produces lncRNA which guides the methylation machinery toward specific genomic locations. Recently, RdDM has been proposed as a dominant methylation mechanism during gamete formation and early embryo development in Arabidopsis thaliana, overshadowing all other methylation mechanisms. Here, we bring an overview of current knowledge about different roles of DNA methylation with emphasis on RdDM during plant zygotic and somatic embryogenesis. Based on published chromatin immunoprecipitation data on PolV binding sites within the A. thaliana genome, we uncover groups of auxin metabolism, reproductive development and embryogenesis-related genes, and discuss possible roles of RdDM at the onset of early embryonic development via targeted methylation at sites involved in different embryogenesis-related developmental mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Yan ◽  
Ha buer ◽  
Ya ping Wang ◽  
Gegen zhula ◽  
Yu´e Bai

Zygotic embryogenesis is a critical process during seed development in gymnosperms. However, knowledge on the genome-wide transcriptional activation that guides this process in conifers is limited, especially in Picea mongolica. This tree species is endemic to semiarid habitats of Inner Mongolia in China. To extend what is known about the molecular events underpinning its zygotic embryogenesis, comparative transcriptomic analyses of gene expression in zygotic embryos were performed by RNA sequencing in P. mongolica. Our results showed that most changes in transcript levels occurred in the early embryonic pattering determination and formation of mature embryos. Transcripts related to embryogenic competence, cell division pattern, hormones, and stress response genes were identified during embryogenesis. Auxin is essential for early embryo patterning and pre-cotyledon embryonic formation. However, ABA is a major regulator of embryo maturation. Moreover, we found that methylation-related gene expression is associated with activation of early-stage embryos, late embryogenesis abundant proteins, and storage/energy-related genes with late and mature embryos. Furthermore, network analysis revealed stage-specific and multistage gene expression clusters during embryogenesis. WOX, MYB, AP2, and HLH transcription factors seem more relevant to embryogenesis in different stages. Our results provide large-scale and comprehensive transcriptome data for embryo development in P. mongolica. These data will lay a foundation for the protection and utilization of P. mongolica resources.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1467
Author(s):  
Camille Salaün ◽  
Loïc Lepiniec ◽  
Bertrand Dubreucq

Somatic embryogenesis is a method of asexual reproduction that can occur naturally in various plant species and is widely used for clonal propagation, transformation and regeneration of different crops. Somatic embryogenesis shares some developmental and physiological similarities with zygotic embryogenesis as it involves common actors of hormonal, transcriptional, developmental and epigenetic controls. Here, we provide an overview of the main signaling pathways involved in the induction and regulation of somatic embryogenesis with a focus on the master regulators of seed development, LEAFY COTYLEDON 1 and 2, ABSCISIC ACID INSENSITIVE 3 and FUSCA 3 transcription factors whose precise role during both zygotic and somatic embryogenesis remains to be fully elucidated.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kamila Godel-Jędrychowska ◽  
Katarzyna Kulińska-Łukaszek ◽  
Ewa Kurczyńska

Intercellular signaling during embryo patterning is not well understood and the role of symplasmic communication has been poorly considered. The correlation between the symplasmic domains and the development of the embryo organs/tissues during zygotic embryogenesis has only been described for a few examples, including Arabidopsis. How this process occurs during the development of somatic embryos (SEs) is still unknown. The aim of these studies was to answer the question: do SEs have a restriction in symplasmic transport depending on the developmental stage that is similar to their zygotic counterparts? The studies included an analysis of the GFP distribution pattern as expressed under diverse promoters in zygotic embryos (ZEs) and SEs. The results of the GFP distribution in the ZEs and SEs showed that 1/the symplasmic domains between the embryo organs and tissues in the SEs was similar to those in the ZEs and 2/the restriction in symplasmic transport in the SEs was correlated with the developmental stage and was similar to the one in their zygotic counterparts, however, with the spatio-temporal differences and different PDs SEL value between these two types of embryos.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Omid Karami ◽  
Arezoo Rahimi ◽  
Patrick Mak ◽  
Anneke Horstman ◽  
Kim Boutilier ◽  
...  

AbstractPlant somatic cells can be reprogrammed into totipotent embryonic cells that are able to form differentiated embryos in a process called somatic embryogenesis (SE), by hormone treatment or through overexpression of certain transcription factor genes, such as BABY BOOM (BBM). Here we show that overexpression of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) gene induces formation of somatic embryos on Arabidopsis thaliana seedlings in the absence of hormone treatment. During zygotic embryogenesis, AHL15 expression starts early in embryo development, and AH15 and other AHL genes are required for proper embryo patterning and development beyond the globular stage. Moreover, AHL15 and several of its homologs are upregulated and required for SE induction upon hormone treatment, and they are required for efficient BBM-induced SE as downstream targets of BBM. A significant number of plants derived from AHL15 overexpression-induced somatic embryos are polyploid. Polyploidisation occurs by endomitosis specifically during the initiation of SE, and is caused by strong heterochromatin decondensation induced by AHL15 overexpression.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 504
Author(s):  
Ana Alves ◽  
Daniela Cordeiro ◽  
Sandra Correia ◽  
Célia Miguel

Small non-coding RNAs (sncRNAs) are molecules with important regulatory functions during development and environmental responses across all groups of terrestrial plants. In seed plants, the development of a mature embryo from the zygote follows a synchronized cell division sequence, and growth and differentiation events regulated by highly regulated gene expression. However, given the distinct features of the initial stages of embryogenesis in gymnosperms and angiosperms, it is relevant to investigate to what extent such differences emerge from differential regulation mediated by sncRNAs. Within these, the microRNAs (miRNAs) are the best characterized class, and while many miRNAs are conserved and significantly represented across angiosperms and other seed plants during embryogenesis, some miRNA families are specific to some plant lineages. Being a model to study zygotic embryogenesis and a relevant biotechnological tool, we systematized the current knowledge on the presence and characterization of miRNAs in somatic embryogenesis (SE) of seed plants, pinpointing the miRNAs that have been reported to be associated with SE in angiosperm and gymnosperm species. We start by conducting an overview of sncRNA expression profiles in the embryonic tissues of seed plants. We then highlight the miRNAs described as being involved in the different stages of the SE process, from its induction to the full maturation of the somatic embryos, adding references to zygotic embryogenesis when relevant, as a contribution towards a better understanding of miRNA-mediated regulation of SE.


2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Thomas Dresselhaus ◽  
Gerd Jürgens

Following fertilization in flowering plants (angiosperms), egg and sperm cells unite to form the zygote, which generates an entire new organism through a process called embryogenesis. In this review, we provide a comparative perspective on early zygotic embryogenesis in flowering plants by using the Poaceae maize and rice as monocot grass and crop models as well as Arabidopsis as a eudicot model of the Brassicaceae family. Beginning with the activation of the egg cell, we summarize and discuss the process of maternal-to-zygotic transition in plants, also taking recent work on parthenogenesis and haploid induction into consideration. Aspects like imprinting, which is mainly associated with endosperm development and somatic embryogenesis, are not considered. Controversial findings about the timing of zygotic genome activation as well as maternal versus paternal contribution to zygote and early embryo development are highlighted. The establishment of zygotic polarity, asymmetric division, and apical and basal cell lineages represents another chapter in which we also examine and compare the role of major signaling pathways, cell fate genes, and hormones in early embryogenesis. Except for the model Arabidopsis, little is known about embryo patterning and the establishment of the basic body plan in angiosperms. Using available in situ hybridization, RNA-sequencing, and marker data, we try to compare how and when stem cell niches are established. Finally, evolutionary aspects of plant embryo development are discussed. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Planta ◽  
2021 ◽  
Vol 253 (3) ◽  
Author(s):  
Ewa Kępczyńska ◽  
Anna Orłowska

Abstract Main conclusion During the 3-week-long induction phase, when M. truncatula cells leaf explants from non-embryogenic genotype (M9) and embryogenic variant (M9-10a) were forming the callus, biosynthesis and degradation of ABA, Gas and IAA proceeded at different levels. Induction of embryo formation is related to a lower ABA content, compared to the content of IAA and that of total bioactive GAs. Abstract Endogenous phytohormones are involved in the regulation of zygotic embryogenesis, but their role, especially of ABA, a plant growth inhibitor, in inducing somatic embryogenesis (SE) in angiosperms is still incompletely known. To arrive a better understanding of the ABA role in the process, we analyzed simultaneously and in detail changes in the contents of both ABA and five bioactive GAs (GA4, GA7, GA1, GA3, GA6) and IAA in M. truncatula non-embryogenic M9 (NE) and embryogenic M9-10a (E) genotypes. The initial leaf explants of both genotypes, and particularly NE, contained many times more ABA compared to the total bioactive GAs or IAA. In tissues during the entire 21-day induction all the hormones mentioned and their metabolites or conjugates were present; however, their contents were found to differ between the lines tested. The ABA level in primary explants of NE genotype was more than two times higher than that in E genotype. An even larger difference in the ABA content was found on the last day (day 21) of the induction phase (IP); the ABA content in E callus was over six times lower than in NE callus. In contrast, the IAA and GAs contents in primary explants of both genotypes in relation to ABA were low, but the contents of IAA and GAs exceeded that of ABA in the M9-10a tissues on the last day of IP. It is shown for the first time that endogenous ABA together with endogenous bioactive GAs and IAA is involved in acquisition of embryogenic competence in Medicago truncatula leaf somatic cells. These findings have a strong functional implication as they allow to improve the SE induction protocol.


Sign in / Sign up

Export Citation Format

Share Document