Friction Stir Welding of Copper Alloys by PTA Hardfaced Chromium Carbide Tools

2016 ◽  
Vol 49 (2) ◽  
pp. 70
Author(s):  
A. Baskaran ◽  
K. Shanmugam ◽  
V. Balasubramanian
2016 ◽  
Vol 49 (2) ◽  
pp. 70 ◽  
Author(s):  
A. Baskaran ◽  
K. Shanmugam ◽  
V. Balasubramanian

2015 ◽  
Vol 809-810 ◽  
pp. 467-472
Author(s):  
Marius Adrian Constantin ◽  
Ana Boşneag ◽  
Monica Iordache ◽  
Eduard Niţu ◽  
Doina Iacomi

Friction Stir Welding (FSW) is the latest innovative and most complex process which is widely applied to the welding of lightweight alloys, such as aluminum and magnesium alloys, and most recently, titanium alloys, copper alloys, steels and super-alloys. Friction stir welding is a highly complex process comprising several highly coupled physical phenomena. The experiments are often time consuming and costly. To overcome these problems, numerical analysis has frequently been used in the last ten years. In this paper is presented a brief review of scientific papers in recent years on numerical simulation of Friction Stir Welding of aluminum alloys. The main elements analyzed by FSW simulation, and briefly in this paper are: temperature and residual stress distribution; work tool geometry (size and shape of the pin); distribution of equivalent plastic deformation; main areas resulted after welding; distribution of microstructure (grain size); parameters and optimization of the FSW process.


Author(s):  
Akshansh Mishra

IMicro friction stir welding (µFSW) process is mainly adapted from the Friction Stir Welding Process. This process is mainly used for joining dissimilar materials. Micro friction stir welding (µFSW) find its applications in thin walled structures, electrical, electronic and micro-mechanical assemblies. The significant challenges are faced when we downscale to achieve µFSW. This paper addresses the current state of the understanding and development of Micro friction stir welding. This paper further outlines the results achieved after Micro friction stir processing of Aluminium alloys, Copper alloys and Zinc alloys.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1106-1116
Author(s):  
Ahmed A. Akber ◽  
Ali A. Khleif ◽  
Abbas N. Hasein

In systems transporting fluids like petrol, water, or any fluids. Copper and brass pipes are used because of the capability to resist corrosion. The copper alloys can be welded by several methods like arc, resistance, friction welding, and gas methods and they can be readily soldered and brazed. In the present study, mechanical properties and finite element modeling evaluation for friction stir welding of two dissimilar pipes (C12200 copper alloy pipe with C36000 copper alloy pipe). During this study six parameters were used where rotation speed of (775,1000,1300 and1525rpm), welding speed of 1.7 mm/min, axial force of 8.5KN, with a CW direction of rotation, and zero degree of tilt angle, using a threaded cone geometry of the tool. The results showed that the best weld quality was in case when the speed of rotation was 1525 rpm. 


2021 ◽  
Vol 890 ◽  
pp. 66-75
Author(s):  
Lia Nicoleta Boțilă ◽  
Radu Cojocaru ◽  
Cristian Ciucă ◽  
Victor Verbiţchi

Considering the remarkable results obtained by using friction stir welding process (FSW), ISIM Timisoara has developed research programs for the knowledge and development of processing processes based on the FSW process principle.The paper presents a synthesis of the researches and the results obtained within some of research projects carried out by ISIM Timisoara, regarding possibilities of using some of processes derived from the FSW process, which has focused mainly on two directions (areas): surface engineering (materials surface processing) and joining by friction riveting. In the field of surfaces engineering, there are presented some results that represent own contributions of ISIM Timisoara, regarding: friction stir processing as well as coating with functional layers from lightweight alloys of steel substrates (by friction with consumable tool).Regarding friction riveting, two methods are presented: classic friction riveting, respectively friction riveting with hybrid effect (mechanical grip and friction welding).The paper shows very good results obtained to FSP processing (for cast aluminum alloys), to friction riveting with hybrid effect (for aluminum and copper alloys) and to friction riveting (for aluminum alloy), but also some limitations of these friction processing methods.Also in the paper are presented new research directions that are currently being addressed, respectively that will be addressed in the next period at ISIM Timisoara, regarding new variants of application of FSW welding.


Author(s):  
Anganan K ◽  
Narendran RJ ◽  
Naveen Prabhu N ◽  
Rahul Varma R ◽  
Sivasubramaniyam R

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


2018 ◽  
Vol 1146 ◽  
pp. 121-125
Author(s):  
Bogdan Radu ◽  
Iosif Hulka ◽  
Radu Cojocaru ◽  
Cristian Ciucă ◽  
Lia Nicoleta Boţilă

During Friction Stir Welding (FSW) process materials to be joined will be subject of intense mechanical and thermal processes, characteristic to this solid state welding process. As a result, the welded materials will suffer quick heating and cooling cycles that will be overlapping on large plastic deformation/flow of the materials, which will produce their phase and structural transformation as well as modification of their properties. The paper investigates the structural transformation of the materials and will analyse the influence between the FSW process and these transformations.


Author(s):  
K. Anganan ◽  
R.J . Narendran ◽  
N Naveen Prabhu ◽  
R Rahul Varma ◽  
R Sivasubramaniyam

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


Sign in / Sign up

Export Citation Format

Share Document