scholarly journals ANTHROPOMETRIC PROFILE AND SELF-REPORTED CLINICAL STATUS OF MASTER ATHLETES ACCORDING TO THREE LEVELS OF ENERGY EXPENDITURE

2022 ◽  
Vol 2 (1) ◽  
pp. 2-14
Author(s):  
José Carlos Lopes Penha ◽  
Wagner Correia Santos ◽  
Mariana Rodrigues Gazzotti ◽  
Oliver Augusto Nascimento ◽  
José Roberto Jardim
DYNA ◽  
2016 ◽  
Vol 83 (196) ◽  
pp. 86-92 ◽  
Author(s):  
Eliana Aparecida Queiroz Bortolozo ◽  
Luiz Alberto Pilatti ◽  
Maria Helene Canteri ◽  
Pedro Arezes

2021 ◽  
Vol 12 ◽  
Author(s):  
Petra Frings-Meuthen ◽  
Sara Henkel ◽  
Michael Boschmann ◽  
Philip D. Chilibeck ◽  
José Ramón Alvero Cruz ◽  
...  

Resting energy expenditure (REE) is determined mainly by fat-free mass (FFM). FFM depends also on daily physical activity. REE normally decreases with increased age due to decreases in FFM and physical activity. Measuring REE is essential for estimating total energy expenditure. As such, there are a number of different equations in use to predict REE. In recent years, an increasing number of older adults continue to participate in competitive sports creating the surge of master athletes. It is currently unclear if these equations developed primarily for the general population are also valid for highly active, older master athletes. Therefore, we tested the validity of six commonly-used equations for predicting REE in master athletes. In conjunction with the World Masters Athletic Championship in Malaga, Spain, we measured REE in 113 master athletes by indirect calorimetry. The most commonly used equations to predict REE [Harris & Benedict (H&B), World Health Organization (WHO), Müller (MÜL), Müller-FFM (MÜL-FFM), Cunningham (CUN), and De Lorenzo (LOR)] were tested for their accuracies. The influences of age, sex, height, body weight, FFM, training hours per week, phase angle, ambient temperature, and athletic specialization on REE were determined. All estimated REEs for the general population differed significantly from the measured ones (H&B, WHO, MÜL, MÜL-FFM, CUN, all p < 0.005). The equation put forward by De Lorenzo provided the most accurate prediction of REE for master athletes, closely followed by FFM-based Cunningham’s equation. The accuracy of the remaining commonly-used prediction equations to estimate REE in master athletes are less accurate. Body weight (p < 0.001), FFM (p < 0.001), FM (p = 0.007), sex (p = 0.045) and interestingly temperature (p = 0.004) are the significant predictors of REE. We conclude that REE in master athletes is primarily determined by body composition and ambient temperature. Our study provides a first estimate of energy requirements for master athletes in order to cover adequately athletes’ energy and nutrient requirements to maintain their health status and physical performance.


2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


1987 ◽  
Author(s):  
P. Christopher Earley ◽  
Pauline Wojnaroski ◽  
William Prest
Keyword(s):  

Author(s):  
U Elbelt ◽  
V Haas ◽  
T Hofmann ◽  
S Jeran ◽  
H Pietz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document