scholarly journals Effect of long-term  fertilizer type with film mulching on maize yield, soil aggregation and bacteria on the Loess Plateau  of China           

Author(s):  
pengfei Dang ◽  
Tiantian Huang ◽  
Chen Lu ◽  
Yüze Li ◽  
Miaomiao Zhang ◽  
...  

Both PU and PC increased maize yield, water use efficiency (WUE), and partial factor productivity from applied N (PFPN), relative to CK. PC increased maize yield more than PU, and had higher soil organic carbon (SOC) content than PU, which was mainly due to the decline in SOC stocks in the 250–2000, 53–250, and <53 μm soil aggregates. The soil bacterial community structure was driven by SOC, C: N ratio, total nitrogen (TN), pH, microaggregates, clay and silt in CK, and by larger macroaggregates and mean weight diameter in PC and PU. Both PC and PU significantly changed soil bacterial community beta diversity, and decreased both positive and negative links of the co-occurrence network, relative to CK. Better soil nutrient conditions in PC explained the small number of positive and negative links between soil bacteria. Our results suggest PM improves maize yield, water and nitrogen use efficiency, and soil aggregate stability while alleviating bacterial competition. However, the reduction of SOC and pH caused by PM still needs our attention. PC alleviates the decline of soil fertility and soil acidification and has higher yield relative to PU. Therefore, we proposed PC is a potential agricultural measure that can replace PU on the Loess Plateau.

2018 ◽  
Vol 202 ◽  
pp. 19-32 ◽  
Author(s):  
Qianmin Jia ◽  
Lefeng Sun ◽  
Shahzad Ali ◽  
Yan Zhang ◽  
Donghua Liu ◽  
...  

2019 ◽  
Vol 213 ◽  
pp. 996-1003 ◽  
Author(s):  
Shengcai Qiang ◽  
Yan Zhang ◽  
Junliang Fan ◽  
Fucang Zhang ◽  
Youzheng Xiang ◽  
...  

2020 ◽  
Vol 86 (9) ◽  
Author(s):  
Zhengming Luo ◽  
Jinxian Liu ◽  
Tong Jia ◽  
Baofeng Chai ◽  
Tiehang Wu

ABSTRACT Grassland degradation is an ecological problem worldwide. This study aimed to reveal the patterns of the variations in bacterial diversity and community structure and in nitrogen cycling functional genes along a subalpine meadow degradation gradient on the Loess Plateau, China. Meadow degradation had a significant effect on the beta diversity of soil bacterial communities (P < 0.05) but not on the alpha diversity (P > 0.05). Nonmetric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM) indicated that the compositions of bacterial and plant communities changed remarkably with increasing meadow degradation (all P < 0.05). The beta diversities of the plant and soil bacterial communities were significantly correlated (P < 0.05), while their alpha diversities were weakly correlated (P > 0.05) along the meadow degradation gradient. Redundancy analysis (RDA) showed that the structure of the bacterial community was strongly correlated with total nitrogen (TN), nitrate nitrogen (NO3−-N), plant Shannon diversity, plant coverage, and soil bulk density (all P < 0.05). Moreover, the abundances of N fixation and denitrification genes of the bacterial community decreased along the degradation gradient, but the abundance of nitrification genes increased along the gradient. The structure of the set of N cycling genes present at each site was more sensitive to subalpine meadow degradation than the structure of the total bacterial community. Our findings revealed compositional shifts in the plant and bacterial communities and in the abundances of key N cycling genes as well as the potential drivers of these shifts under different degrees of subalpine meadow degradation. IMPORTANCE Soil microbes play a crucial role in the biogeochemical cycles of grassland ecosystems, yet information on how their community structure and functional characteristics change with subalpine meadow degradation is scarce. In this study, we evaluated the changes in bacterial community structure and nitrogen functional genes in degraded meadow soils. Meadow degradation had a significant effect on bacterial community composition. Soil total nitrogen was the best predictor of bacterial community structure. The beta diversities of the plant and soil bacterial communities were significantly correlated, while their alpha diversities were only weakly correlated. Meadow degradation decreased the potential for nitrogen fixation and denitrification but increased the potential for nitrification. These results have implications for the restoration and reconstruction of subalpine meadow ecosystem on the Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document