scholarly journals Magnetic resonance imaging of endocardial exits from epicardial ventricular tachycardia substrates in left ventricular nonischemic cardiomyopathy

Author(s):  
Christopher Reithmann ◽  
Bernhard Herkommer ◽  
Theresia Kling ◽  
Cordula Brauns ◽  
Michael Fiek ◽  
...  

Introduction: In patients with left ventricular (LV) nonischemic cardiomyopathy and monomorphic ventricular tachycardia (VT), midmyocardial and epicardial substrates are often involved but endocardial structures may also be affected. Delayed enhancement – magnetic resonance imaging (DE–MRI) was used to characterize the substrates of predominantly epicardial VT to improve identification of target sites for ablation. Methods and Results: 12 patients with LV nonischemic cardiomyopathy and monomorphic VT (prior myocarditis in 9) had a predominantly epicardial (n = 8) or epicardial-only DE-MRI substrate (n = 4). Modest-sized endocardial involvement in predominantly epicardial substrates was identified by DE-MRI in 8 patients. Mapping of 22 VTs was performed in 12 patients using an endo-epicardial approach in 6 patients and an endocardial-only approach in 6 patients. Endocardial VT reentry circuit exit sites as defined by entrainment and pace mapping criteria corresponded to endocardial breakthroughs from predominantly epicardial DE-MRI substrates in 7 patients. The endocardial VT exits were located at the ventricular base near the mitral annulus in 6 patients. Successful endocardial ablation of at least one VT was accomplished in 5 patients. Epicardial ablation as a part of an endo-epicardial approach or as epicardial-only ablation was performed in 6 patients and was successful in 4 patients. Conclusion: Endocardial breakthroughs from predominantly epicardial DE-MRI substrates are often located near the ventricular base in the perivalvular region and correlate with endocardial VT reentry circuit exit sites amenable to ablation.

2015 ◽  
Vol 8 ◽  
pp. CCRep.S26054
Author(s):  
Raef Madanieh ◽  
Shawn Mathew ◽  
Pratik Shah ◽  
Satya K. Vatti ◽  
Abed Madanieh ◽  
...  

We report a case of reversible nonischemic dilated cardiomyopathy in a male in his 60s who presented with an acute heart failure syndrome. Both conventional two-dimensional echocardiography and cardiac magnetic resonance imaging (cMRI) demonstrated severe left ventricular systolic dysfunction; however, both modalities were devoid of significant valvular heart disease as well as the presence of fibrosis, infiltration, inflammation, and scar. After six months of aggressive neurohumoral modulation, there was complete reverse remodeling and normalization of left ventricular function, which highlights the role of cMRI as an adjunct to two-dimensional echocardiography in the detection of a potentially reversible nonischemic cardiomyopathy.


Author(s):  
Shinya Ito ◽  
Akihiro Isotani ◽  
Kyohei Yamaji ◽  
Kenji Ando

Abstract Background  Löffler endocarditis is a condition characterized by cardiac infiltration of eosinophils. Cardiac magnetic resonance imaging (MRI) is a modality for the diagnosis of myocardial damage. Case summary  This is the case of a 77-year-old man with acute decompensated heart failure who was admitted. Transthoracic echocardiography showed preserved left ventricular (LV) systolic function along with LV thrombi attached to the septo-apical wall and the posterior wall, consistent with Löffler endocarditis. Cardiac MRI revealed obliteration of the LV apex and partial filling of the LV cavity, as well as near circumferential subendocardial late gadolinium enhancement (LGE) in the mid- and apical segments. T2-weighted images showed a near circumferential high-intensity area of the LV subendocardial muscle in the mid- and apical segments. High-dose corticosteroids and intravenous heparin were initiated, followed by maintenance warfarin therapy. At 18 months, follow-up cardiac MRI revealed the disappearance of the LV thrombi, and a reduction of LGE, as well as high-intensity areas in the T2-weighted images. Discussion  The high-intensity area of T2-weighted images indicate the presence of subendocardial oedema. Eosinophil-mediated heart damage evolves through three stages: (i) acute necrotic, (ii) thrombotic, and (iii) fibrotic stages. Since the deposition of toxic eosinophil granule proteins and eosinophil infiltration injured the endocardium, the first-line treatment for Löffler endocarditis is corticosteroid therapy. In this case, LGE in the subendocardium and the high-intensity area in the T2-weighted images were reduced at 18 months. High-intensity areas of T2-weighted images in the acute phase might indicate the possibility of therapeutic response to corticosteroid therapy.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Ulbrich ◽  
R S Schoenbauer ◽  
B Kirstein ◽  
J Tomala ◽  
Y Huo ◽  
...  

Abstract Background The relation of left atrial low voltage zones (LVZ) to left ventricular function in patients undergoing pulmonary vein isolation (PVI) is not known. Objective To explore the relationship of left atrial low voltage zones (LVZ) on left ventricular function in patients with atrial fibrillation. Methods From June to Nov. 2018, 107 (mean age 67y, 70 men, 73 persistent AF) consecutive patients with symptomatic AF underwent a PVI with LVZ mapping. Before PVI the left ventricular ejection fraction (EF) and stroke volume (SV) were measured by cardiac magnetic resonance imaging (CMR). From feature-tracking of CMR-cine images left ventricular global, systolic and diastolic longitudinal strains (GLS), circumferential strains (GCS) and radial strains (GRS) were calculated. Results Of 59 patients CMR scanning in sinus rhythm was performed, LVZ were present in 24 patients. LVEF was significantly lower in patients with left atrial LVZ (62±9% vs. 55±15%) (p=0,03). Left ventricular stroke volume was significantly decreased by the extent of LVZ (94±23 vs. 72±21ml), (p=0,03). The left ventricular diastolic strains during ventricular filling (caused by atrial contraction) of GLS (r=−0,52), GCS (r=−0,65) and GRS (r=−0,65) were highly signifcantly correlated to the occurence and extent of LVZ (each p<0,001 respectively). The only systolic ventricular strain was GLS, which decreased (r=−0,3, p=0,03) by the occurance of atrial low voltage. Conclusion The active, atrial part of diastolic left ventricular filling properties is impaired by the occurrence and extent of left atrial LVZ. In patients with left atrial LVZ the left ventricular stroke volume and ejection fraction is decreased already in sinus rhythm. It seems possible that atrial mechanical dysfunction and presence of atrial low voltage maybe predicted by LV diastolic strain analysis.


Sign in / Sign up

Export Citation Format

Share Document