scholarly journals The expected values of Sombor indices in random hexagonal chains, phenylene chains and Sombor indices of some chemical graphs

Author(s):  
Xiaona Fang ◽  
Lihua You ◽  
Hechao Liu

Hexagonal chains are a special class of catacondensed benzenoid system and phenylene chains are a class of polycyclic aromatic compounds. Recently, A family of Sombor indices was introduced by Gutman in the chemical graph theory. It had been examined that these indices may be successfully applied on modeling thermodynamic properties of compounds. In this paper, we study the expected values of the Sombor indices in random hexagonal chains, phenylene chains, and consider the Sombor indices of some chemical graphs such as graphene, coronoid systems and carbon nanocones.

2020 ◽  
Vol 18 (1) ◽  
pp. 1362-1369
Author(s):  
Farkhanda Afzal ◽  
Sabir Hussain ◽  
Deeba Afzal ◽  
Saira Hameed

AbstractChemical graph theory is a subfield of graph theory that studies the topological indices for chemical graphs that have a good correlation with chemical properties of a chemical molecule. In this study, we have computed M-polynomial of zigzag edge coronoid fused by starphene. We also investigate various topological indices related to this graph by using their M-polynomial.


2020 ◽  
Vol 18 (1) ◽  
pp. 339-346 ◽  
Author(s):  
Hong Yang ◽  
Muhammad Kamran Siddiqui ◽  
Muhammad Naeem ◽  
Najma Abdul Rehman

AbstractGraph theory assumes an imperative part in displaying and planning any synthetic structure or substance organizer. Chemical graph theory facilitates in conception of the chemical graphs for their atomic properties. The graphical structure of a chemical involves atoms termed as vertices and the line segment between two different vertices are called edges. In this manuscript, our concentration is on the chemical graph of carbon graphite and cubic carbon. Additionally, we also define a procedure and calculate the degree based topological indices namely Zagreb type indices, Balaban, Forgotten and Augmented indices.


2021 ◽  
Vol 33 (4) ◽  
pp. 30-41
Author(s):  
V.R. KULLI ◽  
◽  
B. CHALUVARAJU ◽  
T.V. ASHA ◽  
◽  
...  

Chemical graph theory is a branch of graph theory whose focus of interest is to finding topological indices of chemical graphs which correlate well with chemical properties of the chemical molecules. In this paper, we compute the Nirmala index, first and second inverse Nirmala indices for some chemical networks like silicate networks, chain silicate networks, hexagonal networks, oxide networks and honeycomb networks along with their comparative analysis.


2019 ◽  
Vol 17 (1) ◽  
pp. 955-962 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Zeshan Saleem Mufti ◽  
Muhammad Faisal Nadeem ◽  
Zaheer Ahmad ◽  
Muhammad Kamran Siddiqui ◽  
...  

AbstractAtoms displayed as vertices and bonds can be shown by edges on a molecular graph. For such graphs we can find the indices showing their bioactivity as well as their physio-chemical properties such as the molar refraction, molar volume, chromatographic behavior, heat of atomization, heat of vaporization, magnetic susceptibility, and the partition coefficient. Today, industry is flourishing because of the interdisciplinary study of different disciplines. This provides a way to understand the application of different disciplines. Chemical graph theory is a mixture of chemistry and mathematics, which plays an important role in chemical graph theory. Chemistry provides a chemical compound, and graph theory transforms this chemical compound into a molecular graphwhich further is studied by different aspects such as topological indices.We will investigate some indices of the line graph of the subdivided graph (para-line graph) of linear-[s] Anthracene and multiple Anthracene.


2019 ◽  
Vol 85 (1) ◽  
pp. 241-247
Author(s):  
Peng-Fei Zhang ◽  
Fang-Dong Zhuang ◽  
Ze-Hao Sun ◽  
Yang Lu ◽  
Jie-Yu Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document