scholarly journals The influence of phylogeny and life history on telomere lengths and telomere rate of change among bird species: a meta-analysis

Author(s):  
François Criscuolo ◽  
F. Stephen Dobson ◽  
Quentin Schull

Longevity is highly variable among animal species, and has coevolved with other of life-history traits, like body size and rates of reproduction. Telomeres, through their erosion over time, are one of the cell mechanisms that produce senescence at the cell level, and might even have an influence on the rate of ageing in whole organisms. However, uneroded telomeres are also risk factors of cell immortalization. The associations of telomere lengths, their rate of change, and life-history traits independent of body size are largely underexplored for birds. To test associations of life-history traits and telomere dynamics, we conducted a phylogenetic meta-analysis using studies of 53 species of birds. We restricted analyses to studies that applied the telomere restriction fragment length (TRF) method, and examined relationships between mean telomere length at the chick (Chick TL) and adult (Adult TL) stages, the mean rate of change in telomere length during life (TROC), and life-history traits. We examined 3 principal components of 12 life-history variables that represented: body size (PC1), the slow-fast continuum of pace-of-life (PC2) and post-fledging parental care (PC3). Phylogeny had at best a small-to-medium influence on Adult and Chick TL (r² = 0.190 and 0.138, respectively), but a substantial influence on TROC (r² = 0.688). Phylogeny strongly influenced life histories: PC1 (r² = 0.828), PC2 (0.838), and PC3 (0.613). Adult TL and Chick TL were poorly associated with the life-history variables. TROC, however, was negatively and moderate-to-strongly associated with PC2 (unadjusted r = -0.340; with phylogenetic correction, r = -0.490). Independent of body size, long-lived species with smaller clutches and slower embryonic rate of growth may exhibited less change in telomere length over their lifetimes. We suggest that telomere lengths may have diverged even among closely avian related species, yet telomere dynamics are strongly linked to the pace of life.

2021 ◽  
Vol 288 (1951) ◽  
pp. 20210271
Author(s):  
L. J. Fitzpatrick ◽  
M. Olsson ◽  
A. Pauliny ◽  
G. M. While ◽  
E. Wapstra

Emerging patterns suggest telomere dynamics and life history are fundamentally linked in endotherms through life-history traits that mediate the processes underlying telomere attrition. Unlike endotherms, ectotherms maintain the ability to lengthen somatic telomeres throughout life and the link between life-history strategies and ectotherm telomere dynamics is unknown. In a well-characterized model system ( Niveoscincus ocellatus ), we used long-term longitudinal data to study telomere dynamics across climatically divergent populations. We found longer telomeres in individuals from the cool highlands than those from the warm lowlands at birth and as adults. The key determinant of adult telomere length across populations was telomere length at birth, with population-specific effects of age and growth on adult telomere length. The reproductive effort had no proximate effect on telomere length in either population. Maternal factors influenced telomere length at birth in the warm lowlands but not the cool highlands. Our results demonstrate that life-history traits can have pervasive and context-dependent effects on telomere dynamics in ectotherms both within and between populations. We argue that these telomere dynamics may reflect the populations' different life histories, with the slow-growing cool highland population investing more into telomere lengthening compared to the earlier-maturing warm lowland population.


2021 ◽  
Vol 11 (19) ◽  
pp. 12908-12922
Author(s):  
François Criscuolo ◽  
F. Stephen Dobson ◽  
Quentin Schull

2021 ◽  
Author(s):  
Michael Le Pepke ◽  
Thor Harald Ringsby ◽  
Dan T. A. Eisenberg

Telomeres, the short DNA sequences that protect chromosome ends, are an ancient molecular structure, which is highly conserved across most eukaryotes. Species differ in their telomere lengths, but the causes of this variation are not well understood. Here, we demonstrate that mean early-life telomere length is an evolutionary labile trait across 58 bird species (representing 35 families in 12 orders) with the greatest trait diversity found among passerines. Among these species, telomere length is significantly negatively associated with the fast-slow axis of life-history variation, suggesting that telomere length may have evolved to mediate trade-offs between physiological requirements underlying the diversity of pace-of-life strategies in birds. Curiously, within some species, larger individual chromosome size predicts longer telomere lengths on that chromosome, leading to the suggestion that telomere length also covaries with chromosome length across species. We show that longer mean chromosome length or genome size tends to be associated with longer mean early-life telomere length (measured across all chromosomes) within a phylogenetic framework constituting up to 32 bird species. Combined, our analyses generalize patterns previously found within a few species and provide potential adaptive explanations for the 10-fold variation in telomere lengths observed among birds.


2019 ◽  
Author(s):  
Pablo Burraco ◽  
Mar Comas ◽  
Senda Reguera ◽  
Francisco Javier Zamora-Camacho ◽  
Gregorio Moreno-Rueda

AbstractThe timing of organisms’ senescence is developmentally programmed but also shaped by the interaction between environmental inputs and life-history traits. In ectotherms, ageing dynamics are still poorly understood despite their particularities concerning thermoregulation, regeneration capacity, or growth trajectory. Here, we investigate the role of life-history traits such as age, sex, body size, body condition, and tail autotomy (i.e self-amputation) in shaping telomere length of six populations of the Algerian sand lizard (Psammodromus algirus) distributed across an elevational gradient from 300 to 2500 meters above the sea level. Additionally, we show in a review table the available information on reptiles’ telomere length. We found that telomeres elongated with lizards’ age. We also observed that body size and age class showed a positive relationship, suggesting that cell replication did not shorten lizards’ telomeres by itself. Elevation affected telomere length in a non-linear way, a pattern that mirrored the variation in age structure across elevation. Telomere length was unaffected by tail autotomy, and was sex-independent, but positively correlated with body condition. Our results show that telomeres elongate throughout the first four years of lizards’ lifetime, a process that stress the role of telomerase in maintaining ectothermic telomeres, and, likely, in extending lifespan in organisms with indeterminate growth. Regarding the non-linear impact that elevation had on telomere length of lizards, our results suggest that habitat (mainly temperature) and organisms’ condition might play a key role in regulation ageing rate. Our findings emphasize the relevance of understanding species’ life histories (e.g. age and body condition) and habitat characteristics for fully disentangling the causes and consequences of lifespan trajectory.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
C A Fassbinder-Orth ◽  
L D Igl ◽  
D C Hahn ◽  
K M Watts ◽  
T E Wilcoxen ◽  
...  

Abstract Avian immunology developed originally by investigating domesticated poultry species (Galliformes), but in recent decades eco-immunological studies of wild bird species have revealed that avian immune systems are more diverse than initially assumed. This study compares six immunological elements in eggs of six species within the same family, the New World blackbirds (Icteridae),whose members differ most notably in two life history parameters, brood parasitism and body size. We measured the maternal immune investment of passive immune components in both yolk and albumen: lysozyme, ovotransferrin, and immunoglobulins (Igs), and LPS-specific Igs. We predicted that brood parasites would have higher levels of immune activity for both innate and adaptive immunity compared with non-brood parasites, and that increased body size could increase microbial exposure of larger animals, resulting in an increase in some adaptive immune responses, such as LPS-specific Igs. We found that brood parasites had significantly higher levels of Igs and lysozyme levels in albumen, but significantly lower levels of Igs in yolk compared with non-brood parasites. Igs in yolk scaled according to body size, with the smallest organisms (the brood parasites) having the lowest levels, and the largest organism (common grackle) having the highest. Our results confirm the findings of other studies of comparative immunity among species in a single taxon that (1) similarities in immune investment cannot be assumed among closely related species and (2) single measures of immune defense cannot be assumed to be indicators of a species’ overall immune strategy, as life history traits can differentially affect immune responses.


2018 ◽  
Vol 93 ◽  
pp. 36-44 ◽  
Author(s):  
Manuel A. Otero ◽  
Favio E. Pollo ◽  
Pablo R. Grenat ◽  
Nancy E. Salas ◽  
Adolfo L. Martino

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9792
Author(s):  
Aluwani Nengovhela ◽  
Christiane Denys ◽  
Peter J. Taylor

Temporal changes in body size have been documented in a number of vertebrate species, with different contested drivers being suggested to explain these changes. Among these are climate warming, resource availability, competition, predation risk, human population density, island effects and others. Both life history traits (intrinsic factors such as lifespan and reproductive rate) and habitat (extrinsic factors such as vegetation type, latitude and elevation) are expected to mediate the existence of a significant temporal response of body size to climate warming but neither have been widely investigated. Using examples of rodents, we predicted that both life history traits and habitat might explain the probability of temporal response using two tests of this hypothesis. Firstly, taking advantage of new data from museum collections spanning the last 106 years, we investigated geographical and temporal variation in cranial size (a proxy for body size) in six African rodent species of two murid subfamilies (Murinae and Gerbillinae) of varying life history, degree of commensality, range size, and habitat. Two species, the commensal Mastomys natalensis, and the non-commensal Otomys unisulcatus showed significant temporal changes in body size, with the former increasing and the latter decreasing, in relation with climate warming. Commensalism could explain the increase in size with time due to steadily increasing food availability through increased agricultural production. Apart from this, we found no general life history or habitat predictors of a temporal response in African rodents. Secondly, in order to further test this hypothesis, we incorporated our data into a meta-analysis based on published literature on temporal responses in rodents, resulting in a combined dataset for 50 species from seven families worldwide; among these, 29 species showed no significant change, eight showed a significant increase in size, and 13 showed a decline in size. Using a binomial logistic regression model for these metadata, we found that none of our chosen life history or habitat predictors could significantly explain the probability of a temporal response to climate warming, reinforcing our conclusion based on the more detailed data from the six African species.


2019 ◽  
Vol 110 (4) ◽  
pp. 403-410 ◽  
Author(s):  
Ned A Dochtermann ◽  
Tori Schwab ◽  
Monica Anderson Berdal ◽  
Jeremy Dalos ◽  
Raphaël Royauté

AbstractThe contribution of genetic variation to phenotypes is a central factor in whether and how populations respond to selection. The most common approach to estimating these influences is via the calculation of heritabilities, which summarize the contribution of genetic variation to phenotypic variation. Heritabilities also indicate the relative effect of genetic variation on phenotypes versus that of environmental sources of variation. For labile traits like behavioral responses, life history traits, and physiological responses, estimation of heritabilities is important as these traits are strongly influenced by the environment. Thus, knowing whether or not genetic variation is present within populations is necessary to understand whether or not these populations can evolve in response to selection. Here we report the results of a meta-analysis summarizing what we currently know about the heritability of behavior. Using phylogenetically controlled methods we assessed the average heritability of behavior (0.235)—which is similar to that reported in previous analyses of physiological and life history traits—and examined differences among taxa, behavioral classifications, and other biologically relevant factors. We found that there was considerable variation among behaviors as to how heritable they were, with migratory behaviors being the most heritable. Interestingly, we found no effect of phylogeny on estimates of heritability. These results suggest, first, that behavior may not be particularly unique in the degree to which it is influenced by factors other than genetics and, second, that those factors influencing whether a behavioral trait will have low or high heritability require further consideration.


2019 ◽  
Vol 30 (4) ◽  
pp. 1096-1105 ◽  
Author(s):  
Joe A Moschilla ◽  
Joseph L Tomkins ◽  
Leigh W Simmons

Abstract The pace-of-life syndrome (POLS) hypothesis considers an animal’s behavior, physiology, and life history as nonindependent components of a single integrated phenotype. However, frequent deviations from the expected correlations between POLS traits suggest that these relationships may be context, and potentially, sex dependent. To determine whether the sexes express distinct POLS trait covariance structures, we observed the behavior (mobility, latency to emerge from a shelter), physiology (mass-specific metabolic rate), and life history (life span, development time) of male and female Australian field crickets (Teleogryllus oceanicus). Path analysis modeling suggested that POLS trait covariation differed between the sexes. Although neither sex displayed the complete integration of traits predicted by the POLS hypothesis, females did display greater overall integration with a significant negative correlation between metabolic rate and risk-taking behavior but with life-history traits varying independently. In males, however, there was no clear association between traits. These results suggest that T. oceanicus do indeed display sex-specific trait covariance structures, emphasizing the importance of acknowledging sex in assessments of POLS.


2004 ◽  
Vol 71 (sup2) ◽  
pp. 117-120 ◽  
Author(s):  
Elena Marzona ◽  
Daniele Seglie ◽  
Cristina Giacoma

Sign in / Sign up

Export Citation Format

Share Document