scholarly journals Seasonal variation of brain size in a freshwater top predator

Author(s):  
Evan Versteeg ◽  
Timothy Fernandes ◽  
Matthew Guzzo ◽  
Frederic Laberge ◽  
Trevor Middel ◽  
...  

1. Teleost fishes occupy a range of ecosystem and habitat types subject to large seasonal fluctuations. Temperate fishes in particular, survive large shifts in temperature, light availability, and access to certain habitats across seasons. Yet, there is limited understanding of how behavioral responses to a seasonally shifting environment might shape, or be shaped by, the nervous system. 2. Here we quantified variation in relative brain size and the size of five externally visible brain regions in a freshwater top predator, lake trout (Salvelinus namaycush), across six consecutive seasons in two different lakes. Acoustic telemetry data from one of our study lakes was collected during the study period from a different subset of individuals and used to infer relationships between brain size and seasonal behaviors (habitat use and movement rate). 3. Our results indicated that lake trout relative brain size was larger in the fall and winter compared to the spring and summer in both lakes. Larger brains coincided with increased use of nearshore lake habitats and increased horizontal movement rates by lake trout in the fall and winter based on acoustic telemetry. The telencephalon followed the same pattern as whole brain size, while the other brain regions (cerebellum, optic tectum, olfactory bulbs, hypothalamus) were only smaller in the spring. 4. Seasonal shifts in total brain size might reflect greater underlying changes in the size of the telencephalon. These findings provide evidence that flexibility in brain size could underpin shifts in behavior which could subserve functions associated with differential habitat use during cold and warm seasons and allow fish to succeed in seasonally variable temperate environments.

2019 ◽  
pp. 423-472
Author(s):  
Georg F. Striedter ◽  
R. Glenn Northcutt

After summarizing the earlier chapters, which focused on the evolution of specific lineages, this chapter examines general patterns in the evolution of vertebrate nervous systems. Most conspicuous is that relative brain size and complexity increased independently in many lineages. The proportional size of individual brain regions tends to change predictably with absolute brain size (and neurogenesis timing), but the scaling rules vary across lineages. Attempts to link variation in the size of individual brain areas (or entire brains) to behavior are complicated in part because the connections, internal organization, and functions of individual brain regions also vary across phylogeny. In addition, major changes in the functional organization of vertebrate brains were caused by the emergence of novel brain regions (e.g., neocortex in mammals and area dorsalis centralis in teleosts) and novel circuits. These innovations significantly modified the “vertebrate brain Bauplan,” but their mechanistic origins and implications require further investigation.


2008 ◽  
Vol 23 (4) ◽  
pp. 289-299 ◽  
Author(s):  
Andrew C. Stanfield ◽  
Andrew M. McIntosh ◽  
Michael D. Spencer ◽  
Ruth Philip ◽  
Sonia Gaur ◽  
...  

AbstractBackgroundStructural brain abnormalities have been described in autism but studies are often small and contradictory. We aimed to identify which brain regions can reliably be regarded as different in autism compared to healthy controls.MethodA systematic search was conducted for magnetic resonance imaging studies of regional brain size in autism. Data were extracted and combined using random effects meta-analysis. The modifying effects of age and IQ were investigated using meta-regression.ResultsThe total brain, cerebral hemispheres, cerebellum and caudate nucleus were increased in volume, whereas the corpus callosum area was reduced. There was evidence for a modifying effect of age and IQ on the cerebellar vermal lobules VI–VII and for age on the amygdala.ConclusionsAutism may result from abnormalities in specific brain regions and a global lack of integration due to brain enlargement. Inconsistencies in the literature partly relate to differences in the age and IQ of study populations. Some regions may show abnormal growth trajectories.


2020 ◽  
Vol 639 ◽  
pp. 169-183
Author(s):  
P Matich ◽  
BA Strickland ◽  
MR Heithaus

Chronic environmental change threatens biodiversity, but acute disturbance events present more rapid and immediate threats. In 2010, a cold snap across south Florida had wide-ranging impacts, including negative effects on recreational fisheries, agriculture, and ecological communities. Here, we use acoustic telemetry and historical longline monitoring to assess the long-term implications of this event on juvenile bull sharks Carcharhinus leucas in the Florida Everglades. Despite the loss of virtually all individuals (ca. 90%) within the Shark River Estuary during the cold snap, the catch per unit effort (CPUE) of age 0 sharks on longlines recovered through recruitment within 6-8 mo of the event. Acoustic telemetry revealed that habitat use patterns of age 0-2 sharks reached an equilibrium in 4-6 yr. In contrast, the CPUE and habitat use of age 3 sharks required 5-7 yr to resemble pre-cold snap patterns. Environmental conditions and predation risk returned to previous levels within 1 yr of the cold snap, but abundances of some prey species remained depressed for several years. Reduced prey availability may have altered the profitability of some microhabitats after the cold snap, leading to more rapid ontogenetic shifts to marine waters among sharks for several years. Accelerated ontogenetic shifts coupled with inter-individual behavioral variability of bull sharks likely led to a slower recovery rate than predicted based on overall shark CPUE. While intrinsic variation driven by stochasticity in dynamic ecosystems may increase the resistance of species to chronic and acute disturbance, it may also increase recovery time in filling the diversity of niches occupied prior to disturbance if resistive capacity is exceeded.


Paleobiology ◽  
1977 ◽  
Vol 3 (4) ◽  
pp. 333-349 ◽  
Author(s):  
Leonard Radinsky

It is commonly believed that the brains of the ancestors of modern carnivores (miacids) were superior to (e.g., larger than) those of other early carnivores (creodonts and mesonychids). Examination of the fossil record of brains of early carnivores reveals no evidence to support that belief. Moreover, evolutionary trends towards increasing relative brain size and an expansion of neocortex are seen in both miacids and creodonts. The neocortex expanded in a different way in miacids than in creodonts and mesonychids (evidenced by different sulcal patterns), but the biological significance of the observed differences is unknown.


Evolution ◽  
1978 ◽  
Vol 32 (4) ◽  
pp. 740-751 ◽  
Author(s):  
John F. Eisenberg ◽  
Don E. Wilson

1966 ◽  
Vol 19 (3) ◽  
pp. 675-681 ◽  
Author(s):  
Cynthia Wimer ◽  
Lee Prater

Learning ability, exploratory behavior, and emotionality were measured in mice genetically selected for high and low total brain weight. The high selection lines scored significantly higher than the low lines in locomotor activity in the open field and discrimination learning performance in a water maze, and these findings were supported by correlations between brain weight and behavioral scores within unselected control lines. There is some evidence that these behavioral differences are associated with general changes in brain size produced by genetic selection.


2022 ◽  
Vol 8 ◽  
Author(s):  
Chantel Elston ◽  
Paul D. Cowley ◽  
Rainer G. von Brandis ◽  
James Lea

Abiotic factors often have a large influence on the habitat use of animals in shallow marine environments. Specifically, tides may alter the physical and biological characteristics of an ecosystem while changes in temperature can cause ectothermic species to behaviorally thermoregulate. Understanding the contextual and relative influences of these abiotic factors is important in prioritizing management plans, particularly for vulnerable faunal groups like stingrays. Passive acoustic telemetry was used to track the movements of 60 stingrays at a remote and environmentally heterogeneous atoll in Seychelles. This was to determine if habitat use varied over daily, diel and tidal cycles and to investigate the environmental drivers behind these potential temporal patterns. Individuals were detected in the atoll year-round, but the extent of their movement and use of multiple habitats increased in the warmer NW-monsoon season. Habitat use varied over the diel cycle, but was inconsistent between individuals. Temperature was also found to influence stingray movements, with individuals preferring the deeper and more thermally stable lagoon habitat when extreme (hot or cold) temperature events were observed on the flats. Habitat use also varied over the tidal cycle with stingrays spending a higher proportion of time in the lagoon during the lowest tides, when movement on the flats were constrained due to shallow waters. The interplay of tides and temperature, and how these varied across diel and daily scales, dynamically influenced stingray habitat use consistently between three species in an offshore atoll.


2021 ◽  
Author(s):  
Erika L. Schumacher ◽  
Bruce A. Carlson

AbstractBrain region size generally scales allometrically with total brain size, but mosaic shifts in brain region size independent of brain size have been found in several lineages and may be related to the evolution of behavioral novelty. African weakly electric fishes (Mormyroidea) evolved a mosaically enlarged cerebellum and hindbrain, yet the relationship to their behaviorally novel electrosensory system remains unclear. We addressed this by studying South American weakly electric fishes (Gymnotiformes) and weakly electric catfishes (Synodontis spp.), which evolved varying aspects of electrosensory systems, independent of mormyroids. If the mormyroid mosaic increases are related to evolving an electrosensory system, we should find similar mosaic shifts in gymnotiforms and Synodontis. Using micro-computed tomography scans, we quantified brain region scaling for multiple electrogenic, electroreceptive, and non-electrosensing species. We found mosaic increases in cerebellum in all three electrogenic lineages relative to non-electric lineages and mosaic increases in torus semicircularis and hindbrain associated with the evolution of electrogenesis and electroreceptor type. These results show that evolving novel electrosensory systems is repeatedly and independently associated with changes in the sizes of individual brain regions independent of brain size, which suggests that selection can impact structural brain composition to favor specific regions involved in novel behaviors.


Sign in / Sign up

Export Citation Format

Share Document