scholarly journals Remember or not? For how long can a clonal plant remember drought stress?

Author(s):  
Jiaxin Quan ◽  
Zuzana Münzbergová ◽  
Vit Latzel

Stress can be remembered by plants in a form of ‘stress memory’ that can alter future phenotypes of previously stressed plants and even phenotypes of their offspring. It was shown that DNA methylation is among the mechanisms mediating the memory. It is not known for how long the memory is kept by plants. If the memory is long lasting, it can become maladaptive in situations when parental-offspring environment differ. We investigated for how long can a parental plant “remember” that it experienced a stress and pass the memory to its clonal offspring. We grew parental plants of three genotypes of Trifolium repens for five months either in control conditions or in control conditions that were interrupted with drought pulses applied for two months in four different time-slots. We also treated half of the parental plants with 5-azacytidine (5-azaC) to test for the potential role of DNA methylation in the stress memory. Then, we transplanted parental cuttings (ramets) individually to control environment and allowed them to produce offspring ramets for two months. The drought stress experienced by parents affected phenotypes of offspring ramets. Such a memory resulted in enhanced number of offspring side branches originating from plants that experienced drought stress maximally 6 weeks before their transplantation to control environment. We did not find any transgenerational memory in offspring of plants that experienced drought stress later than 6 weeks before their transplantation. 5-azaC also reduced the effect of transgenerational memory on offspring ramets. We confirmed that drought stress can trigger transgenerational memory in T. repens that is very likely mediated by DNA methylation. Most importantly, the memory was time limited and was gradually erased. We conclude that the time limited memory on environmental stress can be adaptive as climate tends to be variable and parental-offspring environmental conditions often do not match.

Author(s):  
Jiaxin Quan ◽  
Zuzana Münzbergová ◽  
Vit Latzel

Stress can be remembered by plants in a form of stress legacy that can alter future phenotypes of previously stressed plants and even phenotypes of their offspring. DNA methylation belongs among the mechanisms mediating the stress legacy. It is however not known for how long the stress legacy is carried by plants. If the legacy is long lasting, it can become maladaptive in situations when parental-offspring environments do not match. We investigated for how long after the last exposure of a parental plant to drought can the phenotype of its clonal offspring be altered. We grew parental plants of three genotypes of Trifolium repens for five months either in control conditions or in control conditions that were interrupted with intense drought periods applied for two months in four different time-slots. We also treated half of the parental plants with a demethylating agent (5-azaC) to test for the potential role of DNA methylation in the stress legacy. Then, we transplanted parental cuttings (ramets) individually to control environment and allowed them to produce offspring ramets for two months. The drought stress experienced by parents affected phenotypes of offspring ramets. The stress legacy resulted in enhanced number of offspring ramets originating from parents that experienced drought stress even 8 weeks before their transplantation to the control environment. 5-azaC altered transgenerational effects on offspring ramets. We confirmed that drought stress can trigger transgenerational effect in T. repens that is very likely mediated by DNA methylation. Most importantly, the stress legacy in parental plants persisted for at least 8 weeks suggesting that the stress legacy can persist in a clonal plant Trifolium repens for relatively long period. We suggest that the stress legacy should be considered in future ecological studies on clonal plants.


2018 ◽  
Vol 32 (10) ◽  
pp. 5215-5226 ◽  
Author(s):  
Benjamin P. Larkin ◽  
Sarah J. Glastras ◽  
Hui Chen ◽  
Carol A. Pollock ◽  
Sonia Saad

PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0135391 ◽  
Author(s):  
Eva Fleta-Soriano ◽  
Marta Pintó-Marijuan ◽  
Sergi Munné-Bosch
Keyword(s):  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Shen ◽  
Shuang Wang ◽  
Abby B. Siegel ◽  
Helen Remotti ◽  
Qiao Wang ◽  
...  

Background.Previous studies, including ours, have examined the regulation of microRNAs (miRNAs) by DNA methylation, but whether this regulation occurs at a genome-wide level in hepatocellular carcinoma (HCC) is unclear.Subjects/Methods.Using a two-phase study design, we conducted genome-wide screening for DNA methylation and miRNA expression to explore the potential role of methylation alterations in miRNAs regulation.Results.We found that expressions of 25 miRNAs were statistically significantly different between tumor and nontumor tissues and perfectly differentiated HCC tumor from nontumor. Six miRNAs were overexpressed, and 19 were repressed in tumors. Among 133 miRNAs with inverse correlations between methylation and expression, 8 miRNAs (6%) showed statistically significant differences in expression between tumor and nontumor tissues. Six miRNAs were validated in 56 additional paired HCC tissues, and significant inverse correlations were observed for miR-125b and miR-199a, which is consistent with the inactive chromatin pattern found in HepG2 cells.Conclusion.These data suggest that the expressions of miR-125b and miR-199a are dramatically regulated by DNA hypermethylation that plays a key role in hepatocarcinogenesis.


Epigenomes ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 3 ◽  
Author(s):  
Kay Gully ◽  
Jean-Marc Celton ◽  
Alexandre Degrave ◽  
Sandra Pelletier ◽  
Marie-Noelle Brisset ◽  
...  

Under natural growth conditions, plants experience various and repetitive biotic and abiotic stresses. Salicylic acid (SA) is a key phytohormone involved in the response to biotic challenges. Application of synthetic SA analogues can efficiently prime defense responses, and leads to improved pathogen resistance. Because SA analogues can result in long-term priming and memory, we identified genes for which expression was affected by the SA analogue and explored the role of DNA methylation in this memorization process. We show that treatments with an SA analogue can lead to long-term transcriptional memory of particular genes in Arabidopsis. We found that subsequent challenging of such plants with a bacterial elicitor reverted this transcriptional memory, bringing their expression back to the original pre-treatment level. We also made very similar observations in apple (Malus domestica), suggesting that this expression pattern is highly conserved in plants. Finally, we found a potential role for DNA methylation in the observed transcriptional memory behavior. We show that plants defective in DNA methylation pathways displayed a different memory behavior. Our work improves our understanding of the role of transcriptional memory in priming, and has important implication concerning the application of SA analogues in agricultural settings.


2017 ◽  
Vol 81 (10) ◽  
pp. S345
Author(s):  
Tiffani Berkel ◽  
Huaibo Zhang ◽  
Evan Kyzar ◽  
Tara Teppen ◽  
Harish Krishnan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document