scholarly journals Challenges and Limitations in the Studies of Glycoproteins: A Computational Chemist’s Perspective

Author(s):  
Oyku Balli ◽  
Vladimir Uversky ◽  
Serdar Durdagi ◽  
Orkid Coskuner-Weber

Experimenters face challenges and limitations while analyzing glycoproteins due to their high flexibility, stereochemistry, anisotropic effects, and hydration phenomena. Computational studies complement experiments and have been used in characterization of the structural properties of glycoproteins. However, recent investigations revealed that computational studies face significant challenges as well. Here, we introduce and discuss some of these challenges and weaknesses in the investigations of glycoproteins. We also present requirements of future developments in computational biochemistry and computational biology areas that could be necessary for providing more accurate structural property analyses of glycopro-teins using computational tools. Further theoretical strategies that need to be and can be developed are discussed herein.

Author(s):  
Daniela Wieser ◽  
Irene Papatheodorou ◽  
Matthias Ziehm ◽  
Janet M. Thornton

High-throughput genomic and proteomic technologies have generated a wealth of publicly available data on ageing. Easy access to these data, and their computational analysis, is of great importance in order to pinpoint the causes and effects of ageing. Here, we provide a description of the existing databases and computational tools on ageing that are available for researchers. We also describe the computational approaches to data interpretation in the field of ageing including gene expression, comparative and pathway analyses, and highlight the challenges for future developments. We review recent biological insights gained from applying bioinformatics methods to analyse and interpret ageing data in different organisms, tissues and conditions.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ibrahim Yagiz Akbayrak ◽  
Sule Irem Caglayan ◽  
Zilan Ozcan ◽  
Vladimir N. Uversky ◽  
Orkid Coskuner-Weber

: Experiments face challenges in the analysis of intrinsically disordered proteins in solution due to fast conformational changes and enhanced aggregation propensity. Computational studies complement experiments, being widely used in the analyses of intrinsically disordered proteins, especially those positioned at the centers of neurodegenerative diseases. However, recent investigations – including our own – revealed that computer simulations face significant challenges and limitations themselves. In this review, we introduced and discussed some of the scientific challenges and limitations of computational studies conducted on intrinsically disordered proteins. We also outlined the importance of future developments in the areas of computational chemistry and computational physics that would be needed for generating more accurate data for intrinsically disordered proteins from computer simulations. Additional theoretical strategies that can be developed are discussed herein.


2020 ◽  
Vol 146 (12) ◽  
pp. 04020079 ◽  
Author(s):  
Juan Francisco Macián-Pérez ◽  
Arnau Bayón ◽  
Rafael García-Bartual ◽  
P. Amparo López-Jiménez ◽  
Francisco José Vallés-Morán

2011 ◽  
Vol 255-260 ◽  
pp. 1989-1993
Author(s):  
Chuan Liang Xia ◽  
Zhen Dong Liu ◽  
Peng Sun

Petri net synthesis can avoid the state exploration problem by guaranteeing the correctness in the Petri net while incrementally expanding the net. This paper proposes the conditions imposed on a synthesis shared a kind of subnet under which the following structural properties will be preserved: repetitiveness, consistency, structural boundedness, conservativeness, structural liveness, P-invariant and T-invariant.


2014 ◽  
Vol 575 ◽  
pp. 501-506 ◽  
Author(s):  
Shubhashis Sanyal ◽  
G.S. Bedi

Kinematic chains differ due to the structural differences between them. The location of links, joints and loops differ in each kinematic chain to make it unique. Two similar kinematic chains will produce similar motion properties and hence are avoided. The performance of these kinematic chains also depends on the individual topology, i.e. the placement of its entities. In the present work an attempt has been made to compare a family of kinematic chains based on its structural properties. The method is based on identifying the chains structural property by using its JOINT LOOP connectivity table. Nomenclature J - Number of joints, F - Degree of freedom of the chain, N - Number of links, L - Number of basic loops (independent loops plus one peripheral loop).


Sign in / Sign up

Export Citation Format

Share Document