scholarly journals Development and Evaluation of Palm-based Tibetan Butter Equivalent: Formulation, Rheology, Texture and Microstructure

Author(s):  
Chuan-Guo Ma ◽  
Jie-Yu Li ◽  
Min Ji ◽  
Yoong Jun Hao ◽  
Xiao-Wei Chen

Palm-based Tibetan butter equivalent was developed and evaluated from formulation, rheology, texture to microstructure. Firstly, the compatibility of palm stearin and palm olein was ascertained. The formulations of palm-based Tibetan butter equivalent were then optimally developed using a combination of palm stearin (37.5%), palm olein (37.5%) and soybean oil (25%). These were found to contain high unsaturated fatty acids and analogous solid fat content (SFC) at varying temperatures. Moreover, the palm-based Tibetan butter equivalent (TBE) showed a shear-thinning behavior, a gel characteristic, good plasticity and comparable texture characteristics (such as hardness, adhesion, cohesiveness and elasticity) to traditional Tibetan butter (TB). Furthermore, as determined by polarized light microscopy (PLM) and confocal laser scanning microscopy (CLSM), the microstructures also showed a similar structure, thus further indicating that palm oil is a good candidate as a substitute in making Tibetan-style butter. Overall, the palm-based Tibetan butter equivalent was developed by physical technology and could assist in increasing the enjoyable population as well as addressing the challenge of resource shortage, geographical origin and season of production.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Carolin Haug ◽  
Gerd Mayer ◽  
Verena Kutschera ◽  
Dieter Waloszek ◽  
Andreas Maas ◽  
...  

We give an overview of available techniques for imaging and documenting applied to gammarideans and discuss their advantages and disadvantages. Although recent techniques, such as confocal laser scanning microscopy (cLSM), focused ion beam scanning electron microscopy (FIB SEM), or computed microtomography (μCT), provide new possibilities to detect and document structures, these high-tech devices are expensive, and access to them is often limited. Alternatively, there are many possibilities to enhance the capabilities of established techniques such as macrophotography and light microscopy. We discuss improvements of the illumination with polarized light and the possibilities of utilizing the autofluorescence of animals such as the gammarideans. In addition, we present software-based enhancing tools such as image fusion and image stitching.


1998 ◽  
Vol 550 ◽  
Author(s):  
Chris Thanos ◽  
Maryellen Sandor ◽  
Yong Jong ◽  
Jules Jacob ◽  
Kay-Pong Yip ◽  
...  

AbstractParticle uptake into intestinal tissue has seen increasing attention due to its implications in drug delivery. We attempted to observe a delivery system in vivo and examine uptake in different species. Microspheres were fabricated from polymers including polyanhydrides and delivered to an isolated loop of intestine in several species. The microspheres contained a dye either conjugated to a protein or incorporated freely and were used to qualitatively detect and locate the spheres in the villi of the length of the small intestine. Microspheres were dispersed, sized by a Coulter particle size analyzer, and characterized by confocal and cross-polarized light microscopy, FTIR and SEM. Coulter analysis revealed microspheres to be generally less than 5 microns in diameter. SEM typically showed homogeneous morphology among groups of microspheres. In vivo uptake experiments were performed in rodents, pigs, and ruminants using various microsphere formulations. Microspheres were delivered into the proximal end of the jejunum of anesthetized animals and allowed adequate transit time to be taken up. Animals were euthanized at various time points for explantation of tissue and sampling of blood. Excised samples were embedded inq polyvinyl alcohol, frozen, and cut into sections ranging between 7 and 14 μm in thickness. Our method of incorporating dyes allowed for simultaneous visualization by visible light microscopy and confocal laser scanning microscopy. Two-fluorochrome fluorescence of the microspheres and optical sectioning confirmed the presence of microspheres within intestinal tissue. The amount of uptake depended on the animal model, the duration of the experiment, and the composition of the microsphere. An assay for either the fluorescent dye, the protein attached to it, or the polymer encapsulating it may enable us to determine intracellular concentrations of mierospheres for the quantification of uptake.


Author(s):  
Thomas M. Jovin ◽  
Michel Robert-Nicoud ◽  
Donna J. Arndt-Jovin ◽  
Thorsten Schormann

Light microscopic techniques for visualizing biomolecules and biochemical processes in situ have become indispensable in studies concerning the structural organization of supramolecular assemblies in cells and of processes during the cell cycle, transformation, differentiation, and development. Confocal laser scanning microscopy offers a number of advantages for the in situ localization and quantitation of fluorescence labeled targets and probes: (i) rejection of interfering signals emanating from out-of-focus and adjacent structures, allowing the “optical sectioning” of the specimen and 3-D reconstruction without time consuming deconvolution; (ii) increased spatial resolution; (iii) electronic control of contrast and magnification; (iv) simultanous imaging of the specimen by optical phenomena based on incident, scattered, emitted, and transmitted light; and (v) simultanous use of different fluorescent probes and types of detectors.We currently use a confocal laser scanning microscope CLSM (Zeiss, Oberkochen) equipped with 3-laser excitation (u.v - visible) and confocal optics in the fluorescence mode, as well as a computer-controlled X-Y-Z scanning stage with 0.1 μ resolution.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (10) ◽  
pp. 7-15
Author(s):  
HANNA KOIVULA ◽  
DOUGLAS BOUSFIELD ◽  
MARTTI TOIVAKKA

In the offset printing process, ink film splitting has an important impact on formation of ink filaments. The filament size and its distribution influence the leveling of ink and hence affect ink setting and the print quality. However, ink filaments are difficult to image due to their short lifetime and fine length scale. Due to this difficulty, limited work has been reported on the parameters that influence filament size and methods to characterize it. We imaged ink filament remains and quantified some of their characteristics by changing printing speed, ink amount, and fountain solution type. Printed samples were prepared using a laboratory printability tester with varying ink levels and operating settings. Rhodamine B dye was incorporated into fountain solutions to aid in the detection of the filaments. The prints were then imaged with a confocal laser scanning microscope (CLSM) and images were further analyzed for their surface topography. Modeling of the pressure pulses in the printing nip was included to better understand the mechanism of filament formation and the origin of filament length scale. Printing speed and ink amount changed the size distribution of the observed filament remains. There was no significant difference between fountain solutions with or without isopropyl alcohol on the observed patterns of the filament remains.


2012 ◽  
Vol 11 (3) ◽  
pp. 669-674 ◽  
Author(s):  
Szabolcs Szilveszter ◽  
Botond Raduly ◽  
Szilard Bucs ◽  
Beata Abraham ◽  
Szabolcs Lanyi ◽  
...  

2009 ◽  
Vol 18 (1) ◽  
pp. 11-16
Author(s):  
E.V. Soldatenko ◽  
A.A. Petrov

The morphology of the copulatory apparatus and associated cuticular structures in Planorbis planorbis was studied by light microscopy, SEM, TEM and confocal laser scanning microscopy. The significance of these cuticular structures for the taxonomic status of the species and for the systematics of the family Planorbidae in general is discussed.


Sign in / Sign up

Export Citation Format

Share Document